ln
The natural logarithm function.
Syntax
-
ln(x)-
xis a real or complex number
-
Description
For real positive x, ln(x) is the natural logarithm of x, that is, the unique solution y to exp(y) = e^y = x. Equivalently,
ln(x) = ∫(dt/t) from t = 1 to x.
For complex non-zero z,
ln(z) = ln(abs(z)) + i⋅arg(z)
where the argument arg(z) ∈ (−π, π].
Examples
ln(1)
0
ln(e)
1
ln(π^2)
2.2894597717
ln(−1)
3.14159265359⋅i
ln(i)
1.57079632679⋅i