exp
The exponential function with base e
.
Syntax
-
exp(x)
-
x
is a real or complex number
-
Description
For real x
, exp(x) = e^x
where the base of the natural logarithm e ≈ 2.71828182845904524
. exp
can more precisely be defined as the inverse function of the natural logarithm function ln: ℝ⁺ → ℝ defined by ln(x) = ∫(dt/t) from 1 to x.
For complex z = a + b⋅i
, with a
and b
real, the exponential function is defined by
exp(z) = exp(x) [cos(y) + i⋅sin(y)].
Examples
exp(0)
1
exp(1)
2.71828182846 (=e)
exp(2)
7.38905609893 (=e²)
exp(−π)
0.0432139182638
exp(i)
0.540302305868 + 0.841470984808⋅i
exp(i⋅π)
−1