NilpotencyIndex
Computes the nilpotency index of a square matrix.
Syntax
-
NilpotencyIndex(A[, ε])
-
A
is a square matrix -
ε
is a positive number
-
Description
If A
is a square matrix, then NilpotencyIndex(A, ε)
returns the nilpotency index of A
, that is, the smallest positive number k
such that A^k = 0
or −1 if A^k ≠ 0
for all positive integers k
. Floating-point comparisons are made with epsilon ε
.
Examples
A ≔ ❨❨2, -3, -2, -1, 2❩, ❨2, 0, -2, 2, 2❩, ❨-3, -2, -1, -2, 1❩, ❨-1, -2, 1, -3, -1❩, ❨-3, -2, -1, -3, 2❩❩
⎛ 2 −3 −2 −1 2⎞ ⎜ 2 0 −2 2 2⎟ ⎜−3 −2 −1 −2 1⎟ ⎜−1 −2 1 −3 −1⎟ ⎝−3 −2 −1 −3 2⎠
NilpotencyIndex(A)
5
'(IsZeroMatrix(A^4), IsZeroMatrix(A^5))
false true