IsVandermonde
Tests if a matrix is a Vandermonde matrix.
Syntax
-
IsVandermonde(A[, ε])
-
A
is a matrix -
ε
is a positve number
-
Description
If A
is an n
×m
matrix, then IsVandermonde(A, ε)
returns true
iff A
is a Vandermonde matrix, that is, iff there is a vector v
of dimension n
such that
A[i, j] = v[i]^(j−1)
for all valid indices i, j
. Floating-point comparisons are made with epsilon ε
.
Examples
VandermondeMatrix(❨1, 2, 3, 4, 5, 6❩)
⎛ 1 1 1 1 1 1⎞ ⎜ 1 2 4 8 16 32⎟ ⎜ 1 3 9 27 81 243⎟ ⎜ 1 4 16 64 256 1024⎟ ⎜ 1 5 25 125 625 3125⎟ ⎝ 1 6 36 216 1296 7776⎠
IsVandermonde(ans)
true