GramSchmidt
Performs the Gram–Schmidt orthonormalisation process on (the columns of) a matrix.
Syntax
-
GramSchmidt(A)
-
A
is matrix
-
Description
If A
is a matrix, not necessarily square, then GramSchmidt(A)
is the matrix obtained form A
by the Gram–Schmidt orthonormalisation process.
Examples
A ≔ ❨❨2, 2, −5, 0, −1❩, ❨1, 5, −2, 1, 5❩, ❨0, 1, 3, 2, 6❩, ❨−2, 1, 4, 6, 9❩, ❨3, −2, 7, −2, 6❩❩
⎛ 2 2 −5 0 −1⎞ ⎜ 1 5 −2 1 5⎟ ⎜ 0 1 3 2 6⎟ ⎜−2 1 4 6 9⎟ ⎝ 3 −2 7 −2 6⎠
v ≔ ❨1, 2, 1, 0, 1❩
⎛1⎞ ⎜2⎟ e⎜1⎟ ⎜0⎟ ⎝1⎠
B ≔ GramSchmidt(A);
B ⋅ B* ⋅ v
⎛0.971874108932⎞ ⎜2.07377282903 ⎟ e⎜0.710902726238⎟ ⎜0.10558736155 ⎟ ⎝ 1.0645512254 ⎠
ColumnSpaceProjection(A, v)
⎛0.971874108932⎞ ⎜2.07377282903 ⎟ e⎜0.710902726238⎟ ⎜0.10558736155 ⎟ ⎝ 1.0645512254 ⎠