Cholesky
Performs a Cholesky decomposition of a matrix.
Syntax
-
Cholesky(A)
-
A
is a positive-definite matrix
-
Description
If A
is a positive-definite Hermitian matrix, then Cholesky(A)
returns the Cholesky factor R
of A
. This is an upper triangular matrix such that A = R* ⋅ R
.
Examples
A ≔ ❨❨141, 101, 30, 72, 91❩, ❨101, 127, −7, 50, 81❩, ❨30, −7, 42, 4, −11❩, ❨72, 50, 4, 64, 63❩, ❨91, 81, −11, 63, 96❩❩
⎛141 101 30 72 91⎞ ⎜101 127 −7 50 81⎟ ⎜ 30 −7 42 4 −11⎟ ⎜ 72 50 4 64 63⎟ ⎝ 91 81 −11 63 96⎠
R ≔ Cholesky(A)
⎛ 11.874342087 8.50573440277 2.5264557632 6.06349383168 7.66358248171⎞ ⎜ 0 7.39273171903 −3.85369884705 −0.212975141659 2.13934489144⎟ ⎜ 0 0 4.55697558397 −2.66402370834 −4.85350662485⎟ ⎜ 0 0 0 4.48237234326 0.905253992078⎟ ⎝ 0 0 0 0 2.88386817207⎠
R* ⋅ R
⎛141 101 30 72 91⎞ ⎜101 127 −7 50 81⎟ ⎜ 30 −7 42 4 −11⎟ ⎜ 72 50 4 64 63⎟ ⎝ 91 81 −11 63 96⎠
See also
-
Matrix decompositions (list)