ASNum.pas

File name
C:\Users\Andreas Rejbrand\Documents\Dev\AlgoSim\ASNum.pas
Date exported
Time exported
Formatting processor
TPascalFormattingProcessor
unit ASNum;

{ **************************************************************************** }
{ Rejbrand AlgoSim numerics library                                            }
{ Copyright © 2017-2018 Andreas Rejbrand                                       }
{ https://english.rejbrand.se/                                                 }
{ **************************************************************************** }

{$DEFINE REALCHECK}
{$WARN SYMBOL_PLATFORM OFF}
{$WARN DUPLICATE_CTOR_DTOR OFF}

interface

uses
  SysUtils, Types, Math, Generics.Defaults, Generics.Collections, GenHelpers;

threadvar
  GTYieldProc: TObjProc;

/// <summary>Returns (-1)^N.</summary>
/// <returns>(-1)^N</returns>
function AltSgn(const N: Integer): Integer; inline;

type
  TInt64Guard = record
    class function CanUnMin(const A: Int64): Boolean; static; inline;
    class function CanAbs(const A: Int64): Boolean; static; inline;
    class function CanAdd(const A, B: Int64): Boolean; static; inline;
    class function CanSub(const A, B: Int64): Boolean; static; inline;
    class function CanMul(const A, B: Int64): Boolean; static; inline;
    class function CanDiv(const A, B: Int64): Boolean; static; inline;
    class function CanDivEv(const A, B: Int64): Boolean; static; inline;
    class function CanSqr(const A: Int64): Boolean; static; inline;
  end;

function SameValue2(const A, B: Extended): Boolean; overload;
function SameValue2(const A, B: Double): Boolean; overload;
function SameValueEx(const A, B: Extended; Epsilon: Extended = 0): Boolean; overload;
function SameValueEx(const A, B: Double; Epsilon: Double = 0): Boolean; overload;

function CreateIntSequence(AStart, AEnd: Integer): TArray<Integer>; overload;
function CreateIntSequence(AStart, AEnd, AStep: Integer): TArray<Integer>; overload;
function CreateIntSequence64(AStart, AEnd: Int64): TArray<Int64>; overload;
function CreateIntSequence64(AStart, AEnd, AStep: Int64): TArray<Int64>; overload;
procedure TranslateIntSequence(var ASeq: TArray<Integer>; const Offset: Integer = -1);
function TranslatedIntSequence(const ASeq: array of Integer; const Offset: Integer = -1): TArray<Integer>;
procedure TranslatePoint(var APoint: TPoint; const Offset: Integer = -1);
function TranslatedPoint(const APoint: TPoint; const Offset: Integer = -1): TPoint;

type
  TRange = record
    From, &To, Step: Integer;
    constructor Create(AFrom, ATo: Integer; AStep: Integer = 1); overload;
    constructor Create(ASinglePoint: Integer); overload;
  end;

function ParseRangeSeq(const ARanges: array of TRange; const ALength: Integer): TArray<Integer>;

type
  EMathException = class(Exception);

{$POINTERMATH ON}
  PASR = ^TASR;
{$POINTERMATH OFF}

  TASR = Extended;

  TASRComparer = class
    class var StandardOrder, StandardOrderDescending,
      AbsoluteValue, AbsoluteValueDescending: IComparer<TASR>;
    class constructor ClassCreate;
  end;

  TASRArray = TArray<TASR>;

  TASR2 = record
    X, Y: TASR;
    constructor Create(AX, AY: TASR);
  end;

  TASR3 = packed record
    constructor Create(AX, AY, AZ: TASR);
    case Boolean of
      False:
        (Elems: array[0..2] of TASR);
      True:
        (X, Y, Z: TASR);
  end;

  TASR4 = packed record
    constructor Create(AX, AY, AZ, AW: TASR);
    case Boolean of
      False:
        (Elems: array[0..3] of TASR);
      True:
        (X, Y, Z, W: TASR);
  end;

function IntArrToRealArr(const AArray: TArray<Integer>): TArray<TASR>;
function Int64ArrToRealArr(const AArray: TArray<Int64>): TArray<TASR>;

function IntArrToStrArr(const AArray: TArray<Integer>): TArray<string>;
function Int64ArrToStrArr(const AArray: TArray<Int64>): TArray<string>;

function ASR_COUNT(const A, B: TASR): TASR; inline;
function ASR_PLUS(const A, B: TASR): TASR; inline;
function ASR_TIMES(const A, B: TASR): TASR; inline;

type
  TFormatStyle = (fsDefault = 0, fsMonth = 1, fsDayOfWeek = 2, fsMidiInstrument = 3);
  TFormatStyleHelper = record helper for TFormatStyle
    function ToString: string;
    class function FromString(const S: string): TFormatStyle; static;
  end;

const
  FormatStyleNames: array[TFormatStyle] of string =
    ('default', 'month', 'day of week', 'MIDI instrument');

type
  TNumberFormat = (nfDefault, nfFraction, nfFixed, nfExponent, nfDefExp);

  TNumberBase = 2..36;
  TNumberBases = set of TNumberBase;

  TFormatOptions = record
  type
    TNumberOptions = record
      Base: Byte;
      NumberFormat: TNumberFormat;
      NumDigits: Word;
      MinLength: Byte;
      DecimalSeparator: Char;
      MinusSign: Char;
      IntGrouping: Byte;
      IntGropingChar: Char;
      FracGrouping: Byte;
      FracGroupingChar: Char;
      PrettyExp: Boolean;
      PreferredBases: TNumberBases;
    end;
    TComplexOptions = record
      ImaginaryUnit: Char;
      MultiplicationSign: Char;
      PlusSign: Char;
      MinusSign: Char;
      Spaced: Boolean;
      function ImaginarySuffix: string; inline;
      function PlusStr: string; inline;
      function MinusStr: string; inline;
    end;
    TVectorOptions = record
      MaxLen: Integer;
      VerticalUntil: Integer;
      BasisChar: Char;
      LeftDelim,
      ComponentSep,
      RightDelim: string;
    end;
    TStringOptions = record
      MaxLen: Integer;
      NewLineStr: string;
      Quoted: Boolean;
    end;
    TListOptions = record
      MaxLen: Integer;
      LeftDelim,
      ElementSep,
      RightDelim: string;
    end;
    TStructureOptions = record
      AccessSep,
      ValueSep,
      LeftDelim,
      RightDelim,
      MemberSep: string;
    end;
    TSetOptions = record
      MaxLen: Integer;
      LeftDelim,
      ElementSep,
      RightDelim,
      EmptySetSymbol: string;
    end;
  var
    Numbers: TNumberOptions;
    Complex: TComplexOptions;
    Vectors: TVectorOptions;
    Strings: TStringOptions;
    Lists: TListOptions;
    Structures: TStructureOptions;
    Sets: TSetOptions;
  end;

const
  DOT_OPERATOR = #$22c5;
  PLUS_SIGN = '+';
  HYPHEN_MINUS = '-';
  MINUS_SIGN = #$2212;
  SPACE = #$0020;
  FIGURE_SPACE = #$2007;
  RETURN_SYMBOL_DAWTL = #$21B2;

  DefaultFormatOptions: TFormatOptions =
    (
      Numbers:
        (
          Base: 10;
          NumberFormat: nfDefault;
          NumDigits: 12;
          DecimalSeparator: '.';
          MinusSign: MINUS_SIGN;
          IntGrouping: 0;
          IntGropingChar: FIGURE_SPACE;
          FracGrouping: 0;
          FracGroupingChar: FIGURE_SPACE;
          PrettyExp: True;
          PreferredBases: [10];
        );
      Complex:
        (
          ImaginaryUnit: 'i';
          MultiplicationSign: DOT_OPERATOR;
          PlusSign: '+';
          MinusSign: MINUS_SIGN;
          Spaced: True;
        );
      Vectors:
        (
          MaxLen: 100;
          VerticalUntil: 8;
          BasisChar: 'e';
          LeftDelim: '(';
          ComponentSep: ', ';
          RightDelim: ')';
        );
      Strings:
        (
          MaxLen: 1000;
          NewLineStr: RETURN_SYMBOL_DAWTL;
          Quoted: False;
        );
      Lists:
        (
          MaxLen: 100;
          LeftDelim: '(';
          ElementSep: ', ';
          RightDelim: ')';
        );
      Structures:
        (
          AccessSep: '.';
          ValueSep: ': ';
          LeftDelim: '(';
          RightDelim: ')';
          MemberSep: ', ';
        );
      Sets:
        (
          MaxLen: 100;
          LeftDelim: '{';
          ElementSep: ', ';
          RightDelim: '}';
          EmptySetSymbol: #$2205;
        )
    );

  InputFormOptions: TFormatOptions =
    (
      Numbers:
        (
          Base: 10;
          NumberFormat: nfDefault;
          NumDigits: 18;
          DecimalSeparator: '.';
          MinusSign: MINUS_SIGN;
          IntGrouping: 0;
          IntGropingChar: FIGURE_SPACE;
          FracGrouping: 0;
          FracGroupingChar: FIGURE_SPACE;
          PrettyExp: False
        );
      Complex:
        (
          ImaginaryUnit: 'i';
          MultiplicationSign: DOT_OPERATOR;
          PlusSign: '+';
          MinusSign: MINUS_SIGN;
          Spaced: True;
        );
      Vectors:
        (
          MaxLen: MaxInt;
          VerticalUntil: 1;
          BasisChar: 'e';
          LeftDelim: '❨';
          ComponentSep: ', ';
          RightDelim: '❩';
        );
      Strings:
        (
          MaxLen: MaxInt;
          NewLineStr: RETURN_SYMBOL_DAWTL;
          Quoted: True;
        );
      Lists:
        (
          MaxLen: MaxInt;
          LeftDelim: '''(';
          ElementSep: ', ';
          RightDelim: ')';
        );
      Structures:
        (
          AccessSep: '.';
          ValueSep: ': ';
          LeftDelim: 'structure(';
          RightDelim: ')';
          MemberSep: ', ';
        );
      Sets:
        (
          MaxLen: MaxInt;
          LeftDelim: '{';
          ElementSep: ', ';
          RightDelim: '}';
          EmptySetSymbol: #$2205;
        )
    );

  ExchangeFormOptions: TFormatOptions =
    (
      Numbers:
        (
          Base: 10;
          NumberFormat: nfFraction;
          NumDigits: 18;
          DecimalSeparator: '.';
          MinusSign: HYPHEN_MINUS;
          IntGrouping: 0;
          IntGropingChar: FIGURE_SPACE;
          FracGrouping: 0;
          FracGroupingChar: FIGURE_SPACE;
          PrettyExp: False
        );
      Complex:
        (
          ImaginaryUnit: 'i';
          MultiplicationSign: DOT_OPERATOR;
          PlusSign: '+';
          MinusSign: HYPHEN_MINUS;
          Spaced: True;
        );
      Vectors:
        (
          MaxLen: MaxInt;
          VerticalUntil: MaxInt;
          BasisChar: 'e';
          LeftDelim: '(';
          ComponentSep: ', ';
          RightDelim: ')';
        );
      Strings:
        (
          MaxLen: MaxInt;
          NewLineStr: RETURN_SYMBOL_DAWTL;
          Quoted: True;
        );
      Lists:
        (
          MaxLen: MaxInt;
          LeftDelim: '''(';
          ElementSep: ', ';
          RightDelim: ')';
        );
      Structures:
        (
          AccessSep: '.';
          ValueSep: ': ';
          LeftDelim: '(';
          RightDelim: ')';
          MemberSep: ', ';
        );
      Sets:
        (
          MaxLen: MaxInt;
          LeftDelim: '{';
          ElementSep: ', ';
          RightDelim: '}';
          EmptySetSymbol: #$2205;
        )
    );

function FixNumFmt(const AOptions: TFormatOptions; ANumFmt: TNumberFormat): TFormatOptions;

type
  TASRFormatter = function(const AOptions: TFormatOptions; const Val: TASR): string;

  PASI = ^TASI;
  TASI = Int64;

  PRationalNumber = ^TRationalNumber;
  TRationalNumber = packed record
    Numerator,
    Denominator: TASI;
    class operator Implicit(A: Integer): TRationalNumber;
    class operator Implicit(A: TASI): TRationalNumber;
    class operator Implicit(const X: TRationalNumber): TASR; inline;
    class operator Negative(const X: TRationalNumber): TRationalNumber;
    class operator Add(const X, Y: TRationalNumber): TRationalNumber;
    class operator Subtract(const X, Y: TRationalNumber): TRationalNumber;
    class operator Multiply(const X, Y: TRationalNumber): TRationalNumber;
    class operator Divide(const X, Y: TRationalNumber): TRationalNumber;
    class operator Equal(const X, Y: TRationalNumber): Boolean; inline;
    class operator NotEqual(const X, Y: TRationalNumber): Boolean; inline;
    class function Power(const X: TRationalNumber; const N: TASI): TRationalNumber; static;
    constructor Create(const ANumerator, ADenominator: TASI);
    procedure ToSimplestForm;
    function inv: TRationalNumber;
    function sqr: TRationalNumber;
    function str: string;
    function ToString(const AFormatOptions: TFormatOptions): string; overload;
    function ToString(const AFormatOptions: TFormatOptions; const ASymbol: string): string; overload;
    function ToDecimalString(const AFormatOptions: TFormatOptions): string;
    function valid: Boolean; inline;
    function Abs: TRationalNumber;
    function Sign: TValueSign; inline;
    class procedure ErrNoRep; static;
  end;

const
  InvalidRat: TRationalNumber = (Numerator: 1; Denominator: 0);

type
  TSimpleSymbolicForm = record
    A, B: TRationalNumber;
    Sym: string;
    SymVal: TASR;
    constructor Create(const AA, AB: TRationalNumber; const ASym: string; ASymVal: TASR); overload;
    constructor Create(pA, qA, pB, qB: TASI; const ASym: string; ASymVal: TASR); overload;
    constructor Create(const AA: TRationalNumber); overload;
    constructor Create(pA, qA: TASI); overload;
    constructor Create(const AB: TRationalNumber; const ASym: string; ASymVal: TASR); overload;
    constructor Create(pB, qB: TASI; const ASym: string; ASymVal: TASR); overload;
    constructor CreateInvalid(const Val: TASR);
    class operator Implicit(const X: TRationalNumber): TSimpleSymbolicForm;
    class operator Implicit(const X: TSimpleSymbolicForm): TASR;
    class operator Add(const X: TRationalNumber; const Y: TSimpleSymbolicForm): TSimpleSymbolicForm;
    class operator Multiply(const X: TRationalNumber; const Y: TSimpleSymbolicForm): TSimpleSymbolicForm;
    function str: string; // mainly for debugging
    function sstr: string; // mainly for debugging
    function ToString(const AFormatOptions: TFormatOptions): string;
    function valid: Boolean; inline;
    procedure MakeInvalid; inline;
  end;

  TCSimpleSymbolicForm = record
    Re,
    Im: TSimpleSymbolicForm;
  end;

const
  Sqrt2 = 1.4142135623730950488016887242096980785696718753769480731766797379;
  InvSqrt2 = 1 / Sqrt2;
  PiDiv2 = Pi / 2;
  PiDiv4 = Pi / 4;
  TwoDivPi = 2 / Pi;
  TwoPi = 2 * Pi;
  SqrtPi = 1.77245385090551602729816748334114518;
  SqrtPiInv = 1 / SqrtPi;
  Sqrt2Pi = 2.506628274631000502415765284811045253;
  Sqrt2PiInv = 1 / 2.506628274631000502415765284811045253;
  PiSq = Pi * Pi;
  PiCb = Pi * Pi * Pi;
  PiInv = 1 / Pi;
  PiInvSq = 1 / (Pi * Pi);
  EulerConstant = 2.718281828459045235360287471352;
  SqrtEulerConstant = 1.6487212707001281468486507878141;
  EulerConstantSq = EulerConstant * EulerConstant;
  EulerConstantCb = EulerConstant * EulerConstant * EulerConstant;
  EulerConstantInv = 1 / EulerConstant;
  EulerConstantInvSq = 1 / (EulerConstant * EulerConstant);
  GoldenRatio = 1.618033988749894848204586834365638;
  GoldenRatioConj = 1 - GoldenRatio;
  EulerMascheroni = 0.577215664901532860606512090082;

function IntegerToStr(const x: TASI; const AOptions: TFormatOptions): string;
function RealToStr(const x: TASR; const AOptions: TFormatOptions): string;

// Elementary functions for real numbers
// exp, ln from lib
function pow(const a, b: TASR): TASR; inline;
function intpow(const a, b: TASI): TASI;
// sqrt from Math.pas
function cbrt(const X: TASR): TASR; inline;
function frt(const X: TASR): TASR; inline;
// sin, cos, tan, cot, sec, csc from lib
// arcsin, arccos, arctan, arccot, arcsec, arccsc from lib
// sinh, cosh from lib
function tanh(const X: TASR): TASR; inline;
function coth(const X: TASR): TASR; inline;
function sech(const X: TASR): TASR; inline;
function csch(const X: TASR): TASR; inline;
// arccosh, arctanh, arccoth, arcsech from lib
function arcsinh(const X: TASR): TASR; inline;
function arccsch(const X: TASR): TASR; inline;
function sinc(const X: TASR): TASR; inline;

type
{$POINTERMATH ON}
  PASC = ^TASC;
{$POINTERMATH OFF}

  TASC = packed record
    Re, Im: TASR;
    class operator Implicit(const r: TASR): TASC;
    class operator Positive(const z: TASC): TASC; inline;
    class operator Negative(const z: TASC): TASC; inline;
    class operator Add(const z1: TASC; const z2: TASC): TASC; inline;
    class operator Subtract(const z1: TASC; const z2: TASC): TASC; inline;
    class operator Multiply(const z1: TASC; const z2: TASC): TASC; inline;
    class operator Divide(const z1: TASC; const z2: TASC): TASC;
    class operator Equal(const z1: TASC; const z2: TASC): Boolean; inline;
    class operator NotEqual(const z1: TASC; const z2: TASC): Boolean; inline;
    class operator Round(const z: TASC): TASC;
    class operator Trunc(const z: TASC): TASC;
    function Modulus: TASR; inline;
    function Argument: TASR; inline;
    function Conjugate: TASC; inline;
    function Sqr: TASC; inline;
    function ModSqr: TASR; inline;
    function Inverse: TASC; inline;
    function IsReal: Boolean; inline;
    function Defuzz(const Eps: Double = 1E-8): TASC;
    function str: string; // mainly for debugging
    function pstr: string;
  end;

  TASCComparer = class
    class var ReIm, ReImDescending, Modulus, ModulusDescending, Argument,
      ArgumentDescending, ModulusArgument, ModulusArgumentDescending: IComparer<TASC>;
    class constructor ClassCreate;
  end;

  TASCArray = TArray<TASC>;

const
  ComplexZero: TASC = (Re: 0; Im: 0);
  ImaginaryUnit: TASC = (Re: 0; Im: 1);
  ImaginaryUnitDiv2: TASC = (Re: 0; Im : 1/2);
  NegativeImaginaryUnit: TASC = (Re: 0; Im: -1);
  NegativeImaginaryUnitDiv2: TASC = (Re: 0; Im: -1/2);

function ASC(const Re: TASR; const Im: TASR = 0): TASC; overload; inline;
function ASC_COUNT(const A, B: TASC): TASC; inline;
function ASC_PLUS(const A, B: TASC): TASC; inline;
function ASC_TIMES(const A, B: TASC): TASC; inline;
function ComplexToStr(const z: TASC; ApproxEq: Boolean;
  const AOptions: TFormatOptions): string;
function TryStringToComplex(AString: string; out Value: TASC;
  ASignRequired: Boolean = False): Boolean;
function CSameValue(const z1, z2: TASC; const Epsilon: TASR = 0): Boolean; overload; inline;
function CSameValueEx(const z1, z2: TASC; const Epsilon: TASR = 0): Boolean; overload; inline;
function CIsZero(const z: TASC; const Epsilon: TASR = 0): Boolean; overload; inline;
function IntegerPowerOfImaginaryUnit(const n: Integer): TASC;

function SameValue2(const A, B: TASC): Boolean; overload; inline;

function CompareValue(const A, B: TASC; Epsilon: Extended = 0): TValueRelationship; overload;

// Elementary functions for complex numbers
function csign(const z: TASC): TASC; inline;
function cexp(const z: TASC): TASC; inline;
function cln(const z: TASC): TASC; inline;
function clog(const z: TASC): TASC; inline;
function cpow(const z, w: TASC): TASC;
function csqrt(const z: TASC): TASC; inline;
function csin(const z: TASC): TASC; inline;
function ccos(const z: TASC): TASC; inline;
function ctan(const z: TASC): TASC; inline;
function ccot(const z: TASC): TASC; inline;
function csec(const z: TASC): TASC; inline;
function ccsc(const z: TASC): TASC; inline;
function carcsin(const z: TASC): TASC; inline;
function carccos(const z: TASC): TASC; inline;
function carctan(const z: TASC): TASC; inline;
function carccot(const z: TASC): TASC; inline;
function carcsec(const z: TASC): TASC; inline;
function carccsc(const z: TASC): TASC; inline;
function csinh(const z: TASC): TASC; inline;
function ccosh(const z: TASC): TASC; inline;
function ctanh(const z: TASC): TASC; inline;
function ccoth(const z: TASC): TASC; inline;
function csech(const z: TASC): TASC; inline;
function ccsch(const z: TASC): TASC; inline;
function carcsinh(const z: TASC): TASC; inline;
function carccosh(const z: TASC): TASC; inline;
function carctanh(const z: TASC): TASC; inline;
function carccoth(const z: TASC): TASC; inline;
function carcsech(const z: TASC): TASC; inline;
function carccsch(const z: TASC): TASC; inline;
function csinc(const z: TASC): TASC; inline;

// Integer functions

type
  TIntWithMultiplicity = record
    Factor: TASI;
    Multiplicity: Integer;
  end;

function CollapseWithMultiplicity(const ANumbers: array of TASI): TArray<TIntWithMultiplicity>;

const
  intfactorials: array[0..20] of TASI =
    (1,
     1,
     2,
     6,
     24,
     120,
     720,
     5040,
     40320,
     362880,
     3628800,
     39916800,
     479001600,
     6227020800,
     87178291200,
     1307674368000,
     20922789888000,
     355687428096000,
     6402373705728000,
     121645100408832000,
     2432902008176640000);

  factorials: array[0..100] of TASR =
    (1,
     1,
     2,
     6,
     24,
     120,
     720,
     5040,
     40320,
     362880,
     3628800,
     39916800,
     479001600,
     6227020800,
     87178291200,
     1307674368000,
     20922789888000,
     355687428096000,
     6402373705728000,
     121645100408832000,
     2.43290200817664E18,
     5.109094217170944E19,
     1.12400072777760768E21,
     2.58520167388849766E22,
     6.20448401733239439E23,
     1.5511210043330986E25,
     4.03291461126605636E26,
     1.08888694504183522E28,
     3.0488834461171386E29,
     8.84176199373970196E30,
     2.65252859812191059E32,
     8.22283865417792282E33,
     2.6313083693369353E35,
     8.6833176188118865E36,
     2.95232799039604141E38,
     1.03331479663861449E40,
     3.71993326789901217E41,
     1.3763753091226345E43,
     5.23022617466601112E44,
     2.03978820811974434E46,
     8.15915283247897734E47,
     3.34525266131638071E49,
     1.4050061177528799E51,
     6.04152630633738356E52,
     2.65827157478844877E54,
     1.19622220865480195E56,
     5.50262215981208895E57,
     2.58623241511168181E59,
     1.24139155925360727E61,
     6.08281864034267561E62,
     3.0414093201713378E64,
     1.55111875328738228E66,
     8.06581751709438786E67,
     4.27488328406002556E69,
     2.3084369733924138E71,
     1.26964033536582759E73,
     7.10998587804863452E74,
     4.05269195048772168E76,
     2.35056133128287857E78,
     1.38683118545689836E80,
     8.32098711274139014E81,
     5.07580213877224799E83,
     3.14699732603879375E85,
     1.98260831540444006E87,
     1.26886932185884164E89,
     8.24765059208247066E90,
     5.44344939077443064E92,
     3.64711109181886853E94,
     2.4800355424368306E96,
     1.71122452428141311E98,
     1.19785716699698918E100,
     8.50478588567862317E101,
     6.12344583768860868E103,
     4.47011546151268434E105,
     3.30788544151938641E107,
     2.48091408113953981E109,
     1.88549470166605025E111,
     1.4518309202828587E113,
     1.13242811782062978E115,
     8.94618213078297528E116,
     7.15694570462638023E118,
     5.79712602074736798E120,
     4.75364333701284175E122,
     3.94552396972065865E124,
     3.31424013456535327E126,
     2.81710411438055028E128,
     2.42270953836727324E130,
     2.10775729837952772E132,
     1.85482642257398439E134,
     1.65079551609084611E136,
     1.4857159644817615E138,
     1.35200152767840296E140,
     1.24384140546413073E142,
     1.15677250708164157E144,
     1.08736615665674308E146,
     1.03299784882390593E148,
     9.91677934870949689E149,
     9.61927596824821198E151,
     9.42689044888324774E153,
     9.33262154439441526E155,
     9.33262154439441526E157);

type
  TRatDigitMode = (rdmSingle, rdmFractional, rdmSignificant, rdmFixedSignificant);

function GetDigit(N: TASI; Index: Integer): Integer; overload;
function GetDigits(N: TASI): TArray<Integer>; overload;
function GetDigit(const R: TRationalNumber; Index: Integer): Integer; overload;
function GetDigits(const R: TRationalNumber; Limit: Integer;
  ALimitKind: TRatDigitMode; AFullOutput, ARound: Boolean;
  AFirstDigitPos, AFirstSigDigitPos: PInteger): TArray<Integer>; overload;
function GetDigits(const R: TRationalNumber; Limit: Integer;
  ALimitKind: TRatDigitMode; AFullOutput, ARound: Boolean;
  out AFracDigits: TArray<Integer>): TArray<Integer>; overload;
function GetDigit(X: TASR; Index: Integer): Integer; overload;
function IsInteger(const X: TASR; const Epsilon: Extended = 0): Boolean; inline;
function IsIntegerEx(const X: TASR; const Epsilon: Extended = 0): Boolean; inline;
function IsInteger32(const X: TASR; const Epsilon: Extended = 0): Boolean; inline;
function IsInteger32Ex(const X: TASR; const Epsilon: Extended = 0): Boolean; inline;
function IsInteger64(const X: TASR; const Epsilon: Extended = 0): Boolean; inline;
function IsInteger64Ex(const X: TASR; const Epsilon: Extended = 0): Boolean; inline;
function _fact32(const N: Integer): Integer;
function _fact64(const N: Integer): TASI;
function _factf(const N: Integer): TASR;
function factorial(const N: Integer): TASR;
function combinations(n, k: Integer): TASR;
function intcombinations(n, k: Integer): TASI;
function binomial(const n, k: Integer): TASR; inline; // alias
function permutations(n, k: Integer): TASR;
function intpermutations(n, k: Integer): TASI;
function lcm(const A, B: TASI): TASI; overload;
function lcm(const A, B: UInt64): UInt64; overload;
function TryLCM(const A, B: TASI; var LCM: TASI): Boolean;
function lcm(const Values: array of TASI): TASI; overload;
function gcd(const A, B: TASI): TASI; overload;
function gcd(const A, B: UInt64): UInt64; overload;
function gcd(const Values: array of TASI): TASI; overload;
function coprime(const A, B: TASI): Boolean; inline;
function NaiveTotient(const N: Integer): Integer;
function totient(const N: Integer): Integer;
function cototient(const N: Integer): Integer; inline;
function IsPrime(const N: TASI): Boolean;
function NthPrime(N: Integer): Integer;
function NextPrime(const N: TASI): TASI;
function PreviousPrime(const N: TASI): TASI;
function ExpandPrimeCache(N: Integer): Boolean;
procedure ClearPrimeCache;
function GetPrimeCacheMax: Integer;
function GetPrimeCacheSizeBytes: Integer;
function IsCarolNumber(N: TASI): Boolean;

type
  TTSFPrio = (tsfpSimplest, tsfpMostExact);

function PrimePi(const N: Integer): Integer;

const
  IntPrimorials: array[0..52] of TASI =
    (
      1,
      1,
      2,
      6,
      6,
      30,
      30,
      210,
      210,
      210,
      210,
      2310,
      2310,
      30030,
      30030,
      30030,
      30030,
      510510,
      510510,
      9699690,
      9699690,
      9699690,
      9699690,
      223092870,
      223092870,
      223092870,
      223092870,
      223092870,
      223092870,
      6469693230,
      6469693230,
      200560490130,
      200560490130,
      200560490130,
      200560490130,
      200560490130,
      200560490130,
      7420738134810,
      7420738134810,
      7420738134810,
      7420738134810,
      304250263527210,
      304250263527210,
      13082761331670030,
      13082761331670030,
      13082761331670030,
      13082761331670030,
      614889782588491410,
      614889782588491410,
      614889782588491410,
      614889782588491410,
      614889782588491410,
      614889782588491410
    );

function Primorial(const N: Integer): TASR;

const
  IntFibonaccis: array[0..92] of TASI =
    (
      0,
      1,
      1,
      2,
      3,
      5,
      8,
      13,
      21,
      34,
      55,
      89,
      144,
      233,
      377,
      610,
      987,
      1597,
      2584,
      4181,
      6765,
      10946,
      17711,
      28657,
      46368,
      75025,
      121393,
      196418,
      317811,
      514229,
      832040,
      1346269,
      2178309,
      3524578,
      5702887,
      9227465,
      14930352,
      24157817,
      39088169,
      63245986,
      102334155,
      165580141,
      267914296,
      433494437,
      701408733,
      1134903170,
      1836311903,
      2971215073,
      4807526976,
      7778742049,
      12586269025,
      20365011074,
      32951280099,
      53316291173,
      86267571272,
      139583862445,
      225851433717,
      365435296162,
      591286729879,
      956722026041,
      1548008755920,
      2504730781961,
      4052739537881,
      6557470319842,
      10610209857723,
      17167680177565,
      27777890035288,
      44945570212853,
      72723460248141,
      117669030460994,
      190392490709135,
      308061521170129,
      498454011879264,
      806515533049393,
      1304969544928657,
      2111485077978050,
      3416454622906707,
      5527939700884757,
      8944394323791464,
      14472334024676221,
      23416728348467685,
      37889062373143906,
      61305790721611591,
      99194853094755497,
      160500643816367088,
      259695496911122585,
      420196140727489673,
      679891637638612258,
      1100087778366101931,
      1779979416004714189,
      2880067194370816120,
      4660046610375530309,
      7540113804746346429
    );

function Fibonacci(const N: Integer): TASR;

const
  IntLucas: array[0..90] of TASI =
    (
      2,
      1,
      3,
      4,
      7,
      11,
      18,
      29,
      47,
      76,
      123,
      199,
      322,
      521,
      843,
      1364,
      2207,
      3571,
      5778,
      9349,
      15127,
      24476,
      39603,
      64079,
      103682,
      167761,
      271443,
      439204,
      710647,
      1149851,
      1860498,
      3010349,
      4870847,
      7881196,
      12752043,
      20633239,
      33385282,
      54018521,
      87403803,
      141422324,
      228826127,
      370248451,
      599074578,
      969323029,
      1568397607,
      2537720636,
      4106118243,
      6643838879,
      10749957122,
      17393796001,
      28143753123,
      45537549124,
      73681302247,
      119218851371,
      192900153618,
      312119004989,
      505019158607,
      817138163596,
      1322157322203,
      2139295485799,
      3461452808002,
      5600748293801,
      9062201101803,
      14662949395604,
      23725150497407,
      38388099893011,
      62113250390418,
      100501350283429,
      162614600673847,
      263115950957276,
      425730551631123,
      688846502588399,
      1114577054219522,
      1803423556807921,
      2918000611027443,
      4721424167835364,
      7639424778862807,
      12360848946698171,
      20000273725560978,
      32361122672259149,
      52361396397820127,
      84722519070079276,
      137083915467899403,
      221806434537978679,
      358890350005878082,
      580696784543856761,
      939587134549734843,
      1520283919093591604,
      2459871053643326447,
      3980154972736918051,
      6440026026380244498
    );

function Lucas(const N: Integer): TASR;

function Floor64(const X: TASR): TASI;
function Ceil64(const X: TASR): TASI;
function imod(const x, y: Integer): Integer; overload; inline;
function imod(const x, y: TASI): TASI; overload; inline;
function rmod(const x, y: TASR): TASR; inline;
function modulo(const x, y: Integer): Integer; overload; inline;
function modulo(const x, y: TASR): TASR; overload; inline;

function PrimeFactors(const N: TASI; AOnlyUnique: Boolean = False): TArray<TASI>;
function PrimeFactorsWithMultiplicity(N: TASI): TArray<TIntWithMultiplicity>;

function Radical(N: TASI): TASI;
function IsSquareFree(N: TASI): Boolean;
function factorize(const N: TASI): TArray<TASI>;
function GetFactorizedString(const N: TASI; AMinusSign: Char = '-';
  AMultiplicationSign: Char = '*'; ASpace: Boolean = False): string; overload;
function GetFactorizedString(const N: TASI; AFancy: Boolean): string; overload;
function divisors(const N: TASI): TArray<TASI>;
procedure FactorAsSquareAsPossible(const N: Integer; out A, B: Integer);
function MöbiusMu(const N: TASI): Integer;
function Mertens(const N: TASI): Integer;
function RationalNumber(const ANumerator, ADenominator: TASI): TRationalNumber;
function ToFraction(const X: TASR): TRationalNumber;
function ToSymbolicForm(const X: TASR; APriority: TTSFPrio = tsfpSimplest): TSimpleSymbolicForm;
function CToSymbolicForm(const z: TASC; APriority: TTSFPrio = tsfpSimplest): TCSimpleSymbolicForm;
function IversonBracket(b: Boolean): Integer; inline;
function KroneckerDelta(i, j: Integer): Integer; overload; inline;
function KroneckerDelta(i, j: TASI): Integer; overload; inline;
function LegendreSymbol(a, p: TASI): Integer;
function JacobiSymbol(a, n: TASI): Integer;
function KroneckerSymbol(a, n: TASI): Integer;
function ContinuedFraction(x: TASR; maxlen: Integer = 18): TArray<TASI>; overload;
function ContinuedFraction(const x: TRationalNumber): TArray<TASI>; overload;
function ContinuedFractionToFraction(const AContinuedFraction: TArray<TASI>): TRationalNumber;
function Heaviside(const X: TASR): TASR; inline;
function Ramp(const X: TASR): TASR; inline;
function Rectfcn(const X: TASR): TASR; inline;
function Tri(const X: TASR): TASR; inline;
function SquareWaveUnit(const X: TASR): TASR;
function SquareWave(const X: TASR): TASR; inline;
function TriangleWaveUnit(const X: TASR): TASR;
function TriangleWave(const X: TASR): TASR; inline;
function SawtoothWaveUnit(const X: TASR): TASR;
function SawtoothWave(const X: TASR): TASR; inline;

type
  TRealFunction = function(const X: TASR): TASR;
  TComplexFunction = function(const z: TASC): TASC;
  TRealFunctionRef = reference to function(const X: TASR): TASR;
  TComplexFunctionRef = reference to function(const z: TASC): TASC;

// Differentiation
function differentiate(AFunction: TRealFunctionRef; const X: TASR;
  const ε: TASR = 1E-6): TASR;

// Numerical integration
type
  TIntegrationParams = record
    constructor N(const AN: Integer);
    constructor Delta(const ADelta: TASR);
    case FixedDelta: Boolean of
      False: (FN: Integer);
      True: (FDelta: TASR);
  end;

const
  DefaultIntegrationParams: TIntegrationParams =
    (FixedDelta: True; FDelta: 8E-7);

function integrate(AFunction: TRealFunctionRef; a, b: TASR;
  const AParams: TIntegrationParams): TASR; overload;
function integrate(AFunction: TRealFunctionRef; a, b: TASR): TASR; overload;
function integrate(AFunction: TComplexFunctionRef; a, b: TASR;
  const AParams: TIntegrationParams): TASC; overload;
function integrate(AFunction: TComplexFunctionRef; a, b: TASR): TASC; overload;

type
  TIntegrationCacheItem = record
    X, Val: TASR;
    constructor Create(AX: TASR; AVal: TASR = NaN);
  end;

  PIntegrationCache = ^TIntegrationCache;
  TIntegrationCache = array of TIntegrationCacheItem;

function FillIntegrationCache(AFunction: TRealFunctionRef; a, b: TASR;
  const CacheDelta: TASR;
  var Cache: TIntegrationCache;
  const AParams: TIntegrationParams): TASR; overload;
function FillIntegrationCache(AFunction: TRealFunctionRef; a, b: TASR;
  const CacheDelta: TASR;
  var Cache: TIntegrationCache): TASR; overload;
procedure StepwiseIntegrationCacheFill(AIntegrand: TRealFunctionRef;
  var ACache: TIntegrationCache; ACacheDelta: TASR; const Steps: array of TASR;
  const x: TASR; const a: TASR = 0); overload;
procedure StepwiseIntegrationCacheFill(AIntegrand: TRealFunctionRef;
  var ACache: TIntegrationCache; ACacheDelta: TASR; const Steps: array of TASR;
  const x: TASR; const AParams: TIntegrationParams; const a: TASR = 0); overload;
function ClearIntegrationCache(var ACache: TIntegrationCache): Integer;
function GetIntegrationCacheSize(const ACache: TIntegrationCache): Integer;

function CachedIntegration(AFunction: TRealFunctionRef; a, b: TASR;
  const ACache: TIntegrationCache;
  const AParams: TIntegrationParams): TASR; overload;
function CachedIntegration(AFunction: TRealFunctionRef; a, b: TASR;
  const ACache: TIntegrationCache): TASR; overload;

// Sums, products, max, and min
type
  TSequence<T> = reference to function(N: Integer): T;
  TPredicate<T> = reference to function(const X: T): Boolean;
  TAccumulator<T> = reference to function(const AccumulatedValue, NewValue: T): T;

function sum(const Vals: array of TASI): TASI; overload;
function product(const Vals: array of TASI): TASI; overload;

function accumulate(AFunction: TSequence<TASR>; a, b: Integer;
  AStart: TASR; AAccumulator: TAccumulator<TASR>): TASR; overload;
function accumulate(AFunction: TSequence<TASC>; a, b: Integer;
  AStart: TASC; AAccumulator: TAccumulator<TASC>): TASC; overload;
function sum(AFunction: TSequence<TASR>; a, b: Integer): TASR; overload;
function sum(AFunction: TSequence<TASC>; a, b: Integer): TASC; overload;
function ArithmeticMean(AFunction: TSequence<TASR>; a, b: Integer): TASR; overload;
function ArithmeticMean(AFunction: TSequence<TASC>; a, b: Integer): TASC; overload;
function GeometricMean(AFunction: TSequence<TASR>; a, b: Integer): TASR; overload;
function GeometricMean(AFunction: TSequence<TASC>; a, b: Integer): TASC; overload;
function HarmonicMean(AFunction: TSequence<TASR>; a, b: Integer): TASR; overload;
function HarmonicMean(AFunction: TSequence<TASC>; a, b: Integer): TASC; overload;
function product(AFunction: TSequence<TASR>; a, b: Integer): TASR; overload;
function product(AFunction: TSequence<TASC>; a, b: Integer): TASC; overload;
function max(AFunction: TSequence<TASR>; a, b: Integer): TASR; overload;
function min(AFunction: TSequence<TASR>; a, b: Integer): TASR; overload;
function exists(AFunction: TSequence<TASR>; a, b: Integer;
  APredicate: TPredicate<TASR>): Boolean; overload;
function count(AFunction: TSequence<TASR>; a, b: Integer;
  APredicate: TPredicate<TASR>): Integer; overload;
function count(AFunction: TSequence<TASR>; a, b: Integer;
  AValue: TASR): Integer; overload;
function ForAll(AFunction: TSequence<TASR>; a, b: Integer;
  APredicate: TPredicate<TASR>): Boolean; overload;
function contains(AFunction: TSequence<TASR>; a, b: Integer;
  const AValue: TASR): Boolean; overload;
function exists(AFunction: TSequence<TASC>; a, b: Integer;
  APredicate: TPredicate<TASC>): Boolean; overload;
function count(AFunction: TSequence<TASC>; a, b: Integer;
  APredicate: TPredicate<TASC>): Integer; overload;
function count(AFunction: TSequence<TASC>; a, b: Integer;
  AValue: TASC): Integer; overload;
function ForAll(AFunction: TSequence<TASC>; a, b: Integer;
  APredicate: TPredicate<TASC>): Boolean; overload;
function contains(AFunction: TSequence<TASC>; a, b: Integer;
  const AValue: TASC): Boolean; overload;


// Special functions
function GetSpecialFunctionsIntegrationCacheSize: Integer;
procedure ClearSpecialFunctionsIntegrationCaches;

function erf(const X: TASR): TASR;
function erfc(const X: TASR): TASR; inline;
function FresnelC(const X: TASR): TASR;
function FresnelS(const X: TASR): TASR;
function Si(const X: TASR): TASR;
function Ci(const X: TASR): TASR;
function Li(const X: TASR): TASR;
function LiFrom2(const X: TASR): TASR;
function Bessel(N: Integer; const X: TASR;
  const AParams: TIntegrationParams): TASR; overload;
function Bessel(N: Integer; const X: TASR): TASR; overload; inline;
function Bessel(N: Integer; const z: TASC;
  const AParams: TIntegrationParams): TASC; overload;
function Bessel(N: Integer; const z: TASC): TASC; overload; inline;
function Laguerre(N: Integer; const X: TASR): TASR; overload;
function Laguerre(N: Integer; const z: TASC): TASC; overload;
function Hermite(N: Integer; const X: TASR): TASR; overload;
function Hermite(N: Integer; const z: TASC): TASC; overload;
function Legendre(N: Integer; const X: TASR): TASR; overload;
function Legendre(N: Integer; const z: TASC): TASC; overload;
function GammaFunction(const X: TASR): TASR; overload;
function GammaFunction(const z: TASC): TASC; overload;
function Chebyshev(N: Integer; const X: TASR): TASR; overload;
function Chebyshev(N: Integer; const z: TASC): TASC; overload;
function Bernstein(I, N: Integer; const X: TASR): TASR; overload; inline;
function Bernstein(I, N: Integer; const z: TASC): TASC; overload; inline;
function HarmonicNumber(const N: TASI): TASR;

// Vectors
type
  /// <summary>The AlgoSim real vector type.</summary>
  /// <remarks>A TASRArray can be cast to a TRealVector. That is, if <c>v</c> is
  ///  a TASRArray, then <c>TRealVector(v)</c> is legal. Similarly, a TRealVector
  ///  can be cast to a TASRArray (or the Data member can be used).</remarks>
  TRealVector = record
  strict private
    FComponents: TASRArray;
    function GetDimension: Integer; inline;
    procedure SetDimension(const Value: Integer); inline;
    function GetComponent(Index: Integer): TASR; inline;
    procedure SetComponent(Index: Integer; const Value: TASR); inline;
  public
    constructor Create(const Components: array of TASR); overload;
    constructor Create(ASize: Integer; const AVal: TASR = 0); overload;
    property Components[Index: Integer]: TASR read GetComponent write SetComponent; default;
    property Dimension: Integer read GetDimension write SetDimension;
    property Data: TASRArray read FComponents write FComponents;
    function ToIntegerArray: TArray<Integer>;
    class operator Negative(const u: TRealVector): TRealVector;
    class operator Add(const u: TRealVector; const v: TRealVector): TRealVector;
    class operator Add(const u: TRealVector; const x: TASR): TRealVector;
    class operator Subtract(const u: TRealVector; const v: TRealVector): TRealVector;
    class operator Subtract(const u: TRealVector; const x: TASR): TRealVector;
    class operator Multiply(const u: TRealVector; const v: TRealVector): TASR;
    class operator Multiply(const x: TASR; const u: TRealVector): TRealVector;
    class operator Multiply(const u: TRealVector; const x: TASR): TRealVector;
    class operator Divide(const u: TRealVector; const x: TASR): TRealVector;
    class operator Equal(const u: TRealVector; const v: TRealVector): Boolean;
    class operator NotEqual(const u: TRealVector; const v: TRealVector): Boolean; inline;
    class operator LeftShift(const u: TRealVector; Val: Integer): TRealVector;
    class operator RightShift(const u: TRealVector; Val: Integer): TRealVector;
    class operator Trunc(const u: TRealVector): TRealVector;
    class operator Round(const u: TRealVector): TRealVector;
    class operator LessThan(const u, v: TRealVector): Boolean; inline;
    class operator LessThanOrEqual(const u, v: TRealVector): Boolean; inline;
    class operator GreaterThan(const u, v: TRealVector): Boolean; inline;
    class operator GreaterThanOrEqual(const u, v: TRealVector): Boolean; inline;
    function IsZeroVector(const Epsilon: Extended = 0): Boolean;
    procedure Normalize;
    procedure NormalizeIfNonzero;
    function Normalized: TRealVector;
    function NormalizedIfNonzero: TRealVector; inline;
    function Norm: TASR; inline;
    function NormSqr: TASR; inline;
    function pNorm(const p: TASR): TASR;
    function MaxNorm: TASR; inline;
    function SumNorm: TASR; inline;
    function kNorm(k: Integer): TASR;
    function IsPositive(const Epsilon: Extended = 0): Boolean;
    function IsNonNegative(const Epsilon: Extended = 0): Boolean;
    function IsNegative(const Epsilon: Extended = 0): Boolean;
    function IsNonPositive(const Epsilon: Extended = 0): Boolean;
    function Abs: TRealVector;
    procedure Append(const AValue: TASR); inline;
    procedure ExtendWith(const AValue: TRealVector); inline;
    procedure Insert(AIndex: Integer; const AValue: TASR); inline;
    procedure Remove(const AIndices: array of Integer);
    procedure Swap(AIndex1, AIndex2: Integer); inline;
    function TruncateAt(ALength: Integer): TRealVector; {copy}
    function Reduce(AStep: Integer): TRealVector; {copy}
    function Clone: TRealVector;
    function Subvector(AFrom, ATo: Integer): TRealVector; overload;
    function Subvector(const AIndices: array of Integer): TRealVector; overload;
    function Sort: TRealVector; overload; {in place, no copy}
    function Sort(AComparer: IComparer<TASR>): TRealVector; overload; {in place, no copy}
    function SafeSort(AComparer: IComparer<TASR>): TRealVector; overload; {in place, no copy}
    function ReverseSort: TRealVector; inline; {in place, no copy}
    function Shuffle: TRealVector; {in place, no copy}
    function Unique: TRealVector; {copy}
    function UniqueAdj: TRealVector; {copy}
    function UniqueEps(const Epsilon: TASR = 0): TRealVector; {copy}
    function UniqueAdjEps(const Epsilon: TASR = 0): TRealVector; {copy}
    function Reverse: TRealVector; {in place, no copy}
    function Apply(AFunction: TRealFunctionRef): TRealVector; {copy}
    function Filter(APredicate: TPredicate<TASR>): TRealVector; {copy}
    function Replace(APredicate: TPredicate<TASR>; const ANewValue: TASR): TRealVector; overload; {copy}
    function Replace(const AOldValue, ANewValue: TASR; const Epsilon: Extended = 0): TRealVector; overload; {copy}
    function Replace(const ANewValue: TASR): TRealVector; overload; {copy}
    procedure RemoveFirst(N: Integer);
    function Defuzz(const Eps: Double = 1E-8): TRealVector;
    function str(const AOptions: TFormatOptions): string;
  end;

function ASC(const u: TRealVector): TASC; overload; inline;
function ASR2(const u1, u2: TASR): TRealVector; overload; inline;
function ASR2(const z: TASC): TRealVector; overload; inline;
function ASR3(const u1, u2, u3: TASR): TRealVector; inline;
function ASR4(const u1, u2, u3, u4: TASR): TRealVector; inline;
function ASR5(const u1, u2, u3, u4, u5: TASR): TRealVector; inline;
function ZeroVector(const Dimension: Integer): TRealVector; inline;
function RandomVector(const Dimension: Integer): TRealVector;
function RandomIntVector(const Dimension, A, B: Integer): TRealVector;
function RandomVectorWithSigns(const Dimension: Integer): TRealVector;
function SequenceVector(ALen: Integer; AStart: TASR = 1; AStep: TASR = 1): TRealVector;
function UnitVector(ADim, AIndex: Integer): TRealVector;

function SameVector(const u, v: TRealVector; const Epsilon: Extended = 0): Boolean; overload;
function SameVectorEx(const u, v: TRealVector; const Epsilon: Extended = 0): Boolean; overload;
function AreParallel(const u, v: TRealVector; Epsilon: Extended = 0): Boolean; overload;
function ArePerpendicular(const u, v: TRealVector; const Epsilon: Extended = 0): Boolean; overload; inline;

function accumulate(const u: TRealVector; const AStart: TASR;
  AFunc: TAccumulator<TASR>): TASR; overload;
function sum(const u: TRealVector): TASR; overload;
function ArithmeticMean(const u: TRealVector): TASR; overload; inline;
function GeometricMean(const u: TRealVector): TASR; overload;
function HarmonicMean(const u: TRealVector): TASR; overload;
function product(const u: TRealVector): TASR; overload;
function max(const u: TRealVector): TASR; overload;
function min(const u: TRealVector): TASR; overload;
function exists(const u: TRealVector; APredicate: TPredicate<TASR>): Boolean; overload;
function count(const u: TRealVector; APredicate: TPredicate<TASR>): Integer; overload;
function count(const u: TRealVector; const AValue: TASR): Integer; overload;
function ForAll(const u: TRealVector; APredicate: TPredicate<TASR>): Boolean; overload;
function contains(const u: TRealVector; const AValue: TASR;
  const AEpsilon: TASR = 0; ALen: Integer = -1): Boolean; overload;

function CrossProduct(const u, v: TRealVector): TRealVector; overload;
function angle(const u, v: TRealVector): TASR; overload;
function VectConcat(const u, v: TRealVector): TRealVector; overload;

type
  /// <summary>The AlgoSim complex vector type.</summary>
  /// <remarks>A TASCArray can be cast to a TComplexVector. That is, if <c>v</c>
  ///  is a TASCArray, then <c>TComplexVector(v)</c> is legal.</remarks>
  TComplexVector = record
  strict private
    FComponents: TASCArray;
    function GetDimension: Integer; inline;
    procedure SetDimension(const Value: Integer); inline;
    function GetComponent(Index: Integer): TASC; inline;
    procedure SetComponent(Index: Integer; const Value: TASC); inline;
  public
    constructor Create(const Components: array of TASC); overload;
    constructor Create(ASize: Integer; const AVal: TASC); overload;
    property Components[Index: Integer]: TASC read GetComponent write SetComponent; default;
    property Dimension: Integer read GetDimension write SetDimension;
    property Data: TASCArray read FComponents write FComponents;
    class operator Implicit(const u: TRealVector): TComplexVector;
    class operator Negative(const u: TComplexVector): TComplexVector;
    class operator Add(const u: TComplexVector; const v: TComplexVector): TComplexVector;
    class operator Add(const u: TComplexVector; const z: TASC): TComplexVector;
    class operator Subtract(const u: TComplexVector; const v: TComplexVector): TComplexVector;
    class operator Subtract(const u: TComplexVector; const z: TASC): TComplexVector;
    class operator Multiply(const u: TComplexVector; const v: TComplexVector): TASC;
    class operator Multiply(const z: TASC; const u: TComplexVector): TComplexVector;
    class operator Multiply(const u: TComplexVector; const z: TASC): TComplexVector;
    class operator Divide(const u: TComplexVector; const z: TASC): TComplexVector;
    class operator Equal(const u: TComplexVector; const v: TComplexVector): Boolean;
    class operator NotEqual(const u: TComplexVector; const v: TComplexVector): Boolean; inline;
    class operator LeftShift(const u: TComplexVector; Val: Integer): TComplexVector;
    class operator RightShift(const u: TComplexVector; Val: Integer): TComplexVector;
    class operator Round(const u: TComplexVector): TComplexVector;
    function IsZeroVector(const Epsilon: Extended = 0): Boolean;
    procedure Normalize;
    procedure NormalizeIfNonzero;
    function Normalized: TComplexVector;
    function NormalizedIfNonzero: TComplexVector;
    function Norm: TASR; inline;
    function NormSqr: TASR; inline;
    function pNorm(const p: TASR): TASR;
    function MaxNorm: TASR; inline;
    function SumNorm: TASR; inline;
    function kNorm(k: Integer): TASR;
    function Abs: TRealVector;
    procedure Append(const AValue: TASC); inline;
    procedure ExtendWith(const AValue: TComplexVector); inline;
    procedure Insert(AIndex: Integer; const AValue: TASC); inline;
    procedure Remove(const AIndices: array of Integer);
    procedure Swap(AIndex1, AIndex2: Integer); inline;
    function TruncateAt(ALength: Integer): TComplexVector; {copy}
    function Reduce(AStep: Integer): TComplexVector; {copy}
    function Clone: TComplexVector;
    function Subvector(AFrom, ATo: Integer): TComplexVector; overload;
    function Subvector(const AIndices: array of Integer): TComplexVector; overload;
    function Sort(AComparer: IComparer<TASC>): TComplexVector; {in place, no copy}
    function SafeSort(AComparer: IComparer<TASC>): TComplexVector; {in place, no copy}
    function Shuffle: TComplexVector; {in place, no copy}
    function Unique: TComplexVector; {copy}
    function UniqueAdj: TComplexVector; {copy}
    function UniqueEps(const Epsilon: TASR = 0): TComplexVector; {copy}
    function UniqueAdjEps(const Epsilon: TASR = 0): TComplexVector; {copy}
    function Reverse: TComplexVector; {in place, no copy}
    function Apply(AFunction: TComplexFunctionRef): TComplexVector; {copy}
    function Filter(APredicate: TPredicate<TASC>): TComplexVector; {copy}
    function Replace(APredicate: TPredicate<TASC>;
      const ANewValue: TASC): TComplexVector; overload; {copy}
    function Replace(const AOldValue, ANewValue: TASC;
      const Epsilon: Extended = 0): TComplexVector; overload; {copy}
    function Replace(const ANewValue: TASC): TComplexVector; overload; {copy}
    function RealPart: TRealVector;
    function ImaginaryPart: TRealVector;
    procedure RemoveFirst(N: Integer);
    function Defuzz(const Eps: Double = 1E-8): TComplexVector;
    function str(const AOptions: TFormatOptions): string;
    function IsReal: Boolean;
  end;

function ASC2(const u1, u2: TASC): TComplexVector; inline;
function ASC3(const u1, u2, u3: TASC): TComplexVector; inline;
function ASC4(const u1, u2, u3, u4: TASC): TComplexVector; inline;
function ASC5(const u1, u2, u3, u4, u5: TASC): TComplexVector; inline;
function ComplexZeroVector(const Dimension: Integer): TComplexVector; inline;

function SameVector(const u, v: TComplexVector; const Epsilon: Extended = 0): Boolean; overload;
function SameVectorEx(const u, v: TComplexVector; const Epsilon: Extended = 0): Boolean; overload;
function AreParallel(const u, v: TComplexVector; Epsilon: Extended = 0): Boolean; overload;
function ArePerpendicular(const u, v: TComplexVector; const Epsilon: Extended = 0): Boolean; overload; inline;

function accumulate(const u: TComplexVector; const AStart: TASC;
  AFunc: TAccumulator<TASC>): TASC; overload;
function sum(const u: TComplexVector): TASC; overload;
function ArithmeticMean(const u: TComplexVector): TASC; overload; inline;
function GeometricMean(const u: TComplexVector): TASC; overload;
function HarmonicMean(const u: TComplexVector): TASC; overload;
function product(const u: TComplexVector): TASC; overload;
function exists(const u: TComplexVector; APredicate: TPredicate<TASC>): Boolean; overload;
function count(const u: TComplexVector; APredicate: TPredicate<TASC>): Integer; overload;
function count(const u: TComplexVector; const AValue: TASC): Integer; overload;
function ForAll(const u: TComplexVector; APredicate: TPredicate<TASC>): Boolean; overload;
function contains(const u: TComplexVector; const AValue: TASC;
  const AEpsilon: TASR = 0; ALen: Integer = -1): Boolean; overload;

function CrossProduct(const u, v: TComplexVector): TComplexVector; overload;
function angle(const u, v: TComplexVector): TASR; overload;
function VectConcat(const u, v: TComplexVector): TComplexVector; overload;

const
  INFTY = High(Integer);

// Matrices
type
  TDuplicateFinder<T> = record
    class function ContainsDuplicates(Arr: array of T): Boolean; static;
    class function PresortedContainsDuplicates(const Arr: array of T): Boolean; static;
  end;

  /// <summary>A record that holds the size of a matrix.</summary>
  /// <remarks><para>If cast from an integer N, the matrix size is N×N. Such a
  ///  cast can be implicit.</para>
  ///  <para>TMatrixSize records can be compared using = and <>. Records can be
  ///  added using +; the result is the size of the direct sum of two matrices
  ///  of the given sizes.</para></remarks>
  TMatrixSize = record
  strict private
    FRows, FCols: Integer;
  private
    constructor CreateUnsafe(Rows, Cols: Integer); overload; // not child safe
    function LessenedSize: TMatrixSize; inline; // not child safe
  public
    constructor Create(Rows, Cols: Integer); overload;
    constructor Create(Size: Integer); overload;
    property Rows: Integer read FRows;
    property Cols: Integer read FCols;
    function ElementCount: Integer; inline;
    function SmallestDimension: Integer; inline;
    function TransposeSize: TMatrixSize; inline;
    function IsSquare: Boolean; inline;
    class operator Implicit(S: Integer): TMatrixSize;
    class operator Implicit(const ASize: TSize): TMatrixSize;
    class operator Implicit(const AMatrixSize: TMatrixSize): TSize;
    class operator Equal(const S1, S2: TMatrixSize): Boolean; inline;
    class operator NotEqual(const S1, S2: TMatrixSize): Boolean; inline;
    class operator Add(const S1, S2: TMatrixSize): TMatrixSize; // size of direct sum
  end;

const
  Mat1x1: TMatrixSize = (FRows: 1; FCols: 1);
  Mat2x1: TMatrixSize = (FRows: 2; FCols: 1);
  Mat3x1: TMatrixSize = (FRows: 3; FCols: 1);
  Mat2x2: TMatrixSize = (FRows: 2; FCols: 2);
  Mat3x3: TMatrixSize = (FRows: 3; FCols: 3);
  Mat4x4: TMatrixSize = (FRows: 4; FCols: 4);

type
  TRowOperationType = (roSwap, roScale, roAddMul);

  TMatrixIndexFunction<T> = reference to function(Row, Col: Integer): T;

  TIndexArray = array of Integer;

function __sign(const P: TIndexArray): Integer;

type
  TRealRowOperationRecord = record // Due to a D2009 bug, a generic type cannot be used
    RowOperationType: TRowOperationType;
    Row1, Row2: Integer;
    Factor: TASR;
  end;
  TRealRowOpSequence = array of TRealRowOperationRecord;

  /// <summary>The AlgoSim real matrix type.</summary>
  TRealMatrix = record
  strict private
    const
      InitialRowOpSeqSize = 16; // strategy: then double
    var
      FSize: TMatrixSize;
      FElements: TASRArray;
      FRowOpSeq: TRealRowOpSequence;
      FRowOpCount: Integer;
      FRowOpFactor: TASR;
      _FCollectRowOpData: Boolean; // never set directly -- use BeginCollectRowOpData and EndCollectRowOpData

    procedure SetSize(const Value: TMatrixSize);
    function GetElement(Row, Col: Integer): TASR; inline;
    procedure SetElement(Row, Col: Integer; const Value: TASR); inline;
    function GetRow(ARow: Integer): TRealVector;
    function GetCol(ACol: Integer): TRealVector;
    procedure _DoSetRow(ARowIndex: Integer; const ARow: TRealVector);
    procedure _DoSetCol(AColIndex: Integer; const ACol: TRealVector);
    function GetFirstCol: TRealVector; inline;
    procedure SetFirstCol(const ACol: TRealVector); inline;
    function GetLastCol: TRealVector; inline;
    procedure SetLastCol(const ACol: TRealVector); inline;
    function GetMainDiagonal: TRealVector;
    procedure SetMainDiagonal(const ADiagonal: TRealVector);
    function GetSuperDiagonal: TRealVector;
    procedure SetSuperDiagonal(const ADiagonal: TRealVector);
    function GetSubDiagonal: TRealVector;
    procedure SetSubDiagonal(const ADiagonal: TRealVector);
    function GetAntiDiagonal: TRealVector;
    procedure SetAntiDiagonal(const ADiagonal: TRealVector);
    procedure Alloc(ARows, ACols: Integer); overload;
    procedure Alloc(ASize: Integer); overload;
    procedure Alloc(const ASize: TMatrixSize); overload;
    function GetRowData(AIndex: Integer): PASR; inline;
    function SafeGetRowData(AIndex: Integer): PASR;
    function GetMemorySize: Int64;

    /// <summary>Clears any existing row op data, initializes the row op buffers
    /// and sets the collect row op data flag to true, so that row op data will
    /// be collected after this call.</summary>
    procedure BeginCollectRowOpData;

    /// <summary>Clears any existing row op data and sets the collect row op data
    ///  flag to false.</summary>
//    procedure EndCollectRowOpData;

    /// <summary>Adds a row operation record to the buffer.</summary>
    /// <remarks>Warning! This method MUST NOT be called if FCollectRowOpData
    ///  is set to false. Doing so will result in undefined behaviour.</remarks>
    procedure AddRowOpRecord(AType: TRowOperationType; ARow1, ARow2: Integer;
      AFactor: TASR = 0);

    procedure GetHouseholderMap(const AVect: TRealVector;
      out tau, gamma: TASR; out u: TRealVector);

    /// <summary>Returns the two complex eigenvalues of the second leading
    ///  principal submatrix of the matrix.</summary>
    /// <remarks>The matrix MUST has at least two columns and it MUST have
    ///  at least two rows.</remarks>
    function Eigenvalues2x2: TComplexVector;

  private
    /// <summary>Creates a new real matrix record but does not allocate data
    ///  for the matrix entries. The <c>Data</c> property is set to <c>nil</c>.
    ///  </summary>
    constructor CreateWithoutAllocation(const ASize: TMatrixSize);

    /// <summary>Returns true iff the matrix is an empty matrix, that is, if
    ///  it has exactly zero elements.</summary>
    function IsEmpty: Boolean; inline;

    /// <summary>Performs a fast LU decomposition of the matrix, which has to be
    ///  an n×n square.</summary>
    /// <param name="A">An n×n matrix that receives the elements of L and U.
    ///  The upper triangular part, including the main diagonal, receives the
    ///  elments of U, and the lower triangular part, excluding the diagonal,
    ///  receives the elements of L that are below the main diagonal. The main
    ///  diagonal elements of L are all equal to 1, so A contains all
    ///  information about L and U.</param>
    /// <param name="P">An n-dimensional array of integers that contain all
    ///  information about the row exchanges made during the LU decomposition.
    ///  If the kth element of the array is m, then at the kth step, rows k and
    ///  m (>= k) were exchanged. If m = k, no row exchange was made at this
    ///  step. If m = -1, no row exchange was made at this step, and, in
    ///  addition, it was found that the matrix was singular at this step.
    ///  </param>
    /// <remarks>This method is as fast as possible. The public method
    ///  LU uses this method to construct the actual matrixes L, U, and P in
    ///  the LU decomposition Self = P.Transpose * L * U.</remarks>
    /// <exception cref="EMathException">Raised if the matrix isn't square.
    ///  </exception>
    procedure DoQuickLU(out A: TRealMatrix; out P: TIndexArray);

    procedure RequireNonEmpty; inline;

  public

    // ***
    // Constructors
    // ***

    /// <summary>Allocates memory for a new real matrix of a given size.
    ///  Equivalently, it creates a new real matrix of a given size with
    ///  elements with undefined initial values.</summary>
    /// <remarks>Creating an uninitialized matrix of a given size is faster
    ///  compared to creating an initialized matrix of the same size.</remarks>
    constructor CreateUninitialized(const ASize: TMatrixSize);

    /// <summary>Copy constructor for <c>TRealMatrix</c>.</summary>
    constructor Create(const AMatrix: TRealMatrix); overload;

    /// <summary>Creates a new real matrix from an array of real-number arrays.
    ///  Each real-number array will form a row in the matrix.</summary>
    /// <param name="Elements">An open array of real-number arrays that will
    ///  be used to create the matrix.</param>
    /// <remarks>The real-number arrays have to have the same length; this
    ///  common length becomes the number of columns of the matrix.</remarks>
    /// <see cref="CreateFromRows" />
    /// <see cref="CreateFromColumns" />
    constructor Create(const Elements: array of TASRArray); overload;

    /// <summary>Creates a new real matrix from a single array of real numbers
    ///  and a given matrix format; the real numbers will populate the matrix
    ///  top to bottom and left to right. The real number with index i + 1 will
    ///  be to the right of the element with index i unless the latter is the
    ///  right-most element of a row, in which case element i + 1 will become
    ///  the first element of the next row.</summary>
    /// <param name="Elements">An array of real numbers.</param>
    /// <param name="Cols">The number of columns in the matrix.</param>
    /// <remarks>The number of rows in the matrix will be the length of
    ///  <c>Elements</c> divided by <c>Cols</c>, which has to be an integer.
    ///  The default value of <c>Cols</c> is 1, which will create a single-column
    ///  matrix (a column vector) with the length of <c>Elements</c>.</remarks>
    constructor Create(const Elements: array of TASR; Cols: Integer = 1); overload;

    /// <summary>Creates a new real matrix with a given format and fills it with
    ///  a given real number.</summary>
    /// <param name="ASize">The format of the matrix.</param>
    /// <param name="AVal">The real number to fill the matrix with.</param>
    /// <remarks>The default value of <c>AVal</c> is zero, which will create the
    ///  zero matrix of the given size.</remarks>
    constructor Create(const ASize: TMatrixSize; const AVal: TASR = 0); overload;

    /// <summary>Creates a new real matrix from a sequence of real vectors, which
    ///  will form the rows of the matrix.</summary>
    /// <param name="Rows">An open array of real vectors; each real vector will
    ///  form a row in the matrix. The number of real vectors will become the
    ///  number of rows in the matrix.</param>
    /// <remarks>The vectors need to have the same length, which will become the
    ///  number of columns of the matrix.</remarks>
    constructor CreateFromRows(const Rows: array of TRealVector);

    /// <summary>Creates a new real matrix from a sequence of real vectors, which
    ///  will form the columns of the matrix.</summary>
    /// <param name="Columns">An open array of real vectors; each real vector will
    ///  form a column in the matrix. The number of real vectors will become the
    ///  number of columns in the matrix.</param>
    /// <remarks>The vectors need to have the same length, which will become the
    ///  number of rows of the matrix.</remarks>
    constructor CreateFromColumns(const Columns: array of TRealVector);

    /// <summary>Creates a new real matrix A from two real vectors u and v; the
    ///  matrix is the outer product of the vectors, that is, A_ij = u_i * v_j.
    ///  </summary>
    /// <param name="u">The first real vector.</param>
    /// <param name="v">The second real vector.</param>
    /// <remarks>The vectors need not be of the same dimension.</remarks>
    constructor Create(const u, v: TRealVector); overload;

    /// <summary>Creates a new real matrix using given format and a real-valued
    ///  function of valid matrix indices.</summary>
    /// <param name="ASize">The format of the matrix.</param>
    /// <param name="AFunction">A reference to a real-valued function of matrix
    ///  indices (integers). This function is used to populate the matrix. The
    ///  element (i, j) in the matrix is the value AFunction(i, j). Here,
    ///  row and column indices are 1-based.</param>
    constructor Create(const ASize: TMatrixSize;
      AFunction: TMatrixIndexFunction<TASR>); overload;

    /// <summary>Creates a new diagonal real matrix using a given array of real
    ///  numbers.</summary>
    /// <param name="Elements">An open array of real numbers that will be used as
    ///  the diagonal entries of the matrix.</param>
    constructor CreateDiagonal(const Elements: array of TASR); overload;

    /// <summary>Creates a new diagonal real matrix using a given real vector.
    ///  </summary>
    /// <param name="Elements">A real vector that will be used to populate the
    ///  diagonal of the matrix.</param>
    constructor CreateDiagonal(const Elements: TRealVector); overload;

    /// <summary>Creates a new diagonal real matrix of a given size and a (fixed)
    ///  given value on the diagonal.</summary>
    /// <param name="ASize">The format of the matrix.</param>
    /// <param name="AVal">The value on the main diagonal.</param>
    constructor CreateDiagonal(ASize: Integer; AVal: TASR = 1); overload;

    /// <summary>Creates a new real matrix using pre-defined blocks.</summary>
    /// <param name="Blocks">An open array of the blocks of the matrix in row-
    ///  major order.</param>
    /// <param name="Cols">The number of blocks per row of the block matrix;
    ///  this value must be at least 1.</param>
    /// <remarks>Each block must contain at least a single element. In each row
    ///  of the block matrix, the number of rows in each block must be the same.
    ///  In each column of the block matrix, the number of columns in each block
    ///  must be the same. If the number of elements of <c>Blocks</c> is not
    ///  divisible by <c>Cols</c>, it will be padded with zero matrices until
    ///  the last row is filled.</remarks>
    /// <exception cref="EMathException">Raised if any of the constraints
    ///  specified above are violated.</exception>
    constructor Create(const Blocks: array of TRealMatrix; Cols: Integer = 2); overload;

    // ***
    // Properties
    // ***

    /// <summary>The size of the matrix.</summary>
    property Size: TMatrixSize read FSize write SetSize;

    /// <summary>Gives access to the matrix elements using row and column indices.
    ///  </summary>
    /// <remarks>Row and column indices are zero-based.</remarks>
    property Elements[Row, Col: Integer]: TASR read GetElement write SetElement; default;

    /// <summary>Gives access to the rows of the matrix.</summary>
    /// <remarks>Row indices are zero-based.</remarks>
    property Rows[Index: Integer]: TRealVector read GetRow write _DoSetRow;

    /// <summary>Gives access to the columns of the matrix.</summary>
    /// <remarks>Column indices are zero-based.</remarks>
    property Cols[Index: Integer]: TRealVector read GetCol write _DoSetCol;

    /// <summary>Gives access to the first column.</summary>
    property FirstColumn: TRealVector read GetFirstCol write SetFirstCol;

    /// <summary>Gives access to the last column.</summary>
    property LastColumn: TRealVector read GetLastCol write SetLastCol;

    /// <summary>Gives access to the main diagonal of the matrix.</summary>
    /// <remarks>Diagonal indices are zero-based.</remarks>
    property MainDiagonal: TRealVector read GetMainDiagonal write SetMainDiagonal;

    /// <summary>Gives access to the superdiagonal of the matrix.</summary>
    /// <remarks>Superdiagonal indices are zero-based.</remarks>
    property SuperDiagonal: TRealVector read GetSuperDiagonal write SetSuperDiagonal;

    /// <summary>Gives access to the subdiagonal of the matrix.</summary>
    /// <remarks>Subdiagonal indices are zero-based.</remarks>
    property SubDiagonal: TRealVector read GetSubDiagonal write SetSubDiagonal;

    /// <summary>Gives access to the antidiagonal of the matrix.</summary>
    /// <remarks>Antidiagonal indices are zero-based.</remarks>
    property AntiDiagonal: TRealVector read GetAntiDiagonal write SetAntiDiagonal;

    /// <summary>Gives access to the underlying data as an array of real numbers
    ///  in row-major order.</summary>
    /// <remarks>This may be cast to a TRealVector. Notice that all changes to the
    ///  data will affect the original matrix. The AsVector member function instead
    ///  makes a copy of the data.</remarks>
    /// <see cref="AsVector" />
    property Data: TASRArray read FElements write FElements;

    /// <summary>Returns a pointer to the first element of a specific row.
    ///  The row index MUST be valid.</summary>
    property RowData[Index: Integer]: PASR read GetRowData;

    /// <summary>Returns a pointer to the first element of a specific row.
    ///  The function validates that the row index is valid, and raises an
    ///  exception if it is not.</summary>
    property SafeRowData[Index: Integer]: PASR read SafeGetRowData;

    /// <summary>The total size in bytes of this matrix.</summary>
    property MemorySize: Int64 read GetMemorySize;

    // ***
    // Operators
    // ***

    /// <summary>Creates a single-column matrix from a vector.</summary>
    class operator Implicit(const u: TRealVector): TRealMatrix;

    /// <summary>Treats a single-column matrix as a vector.</summary>
    class operator Explicit(const A: TRealMatrix): TRealVector; inline;

    /// <summary>Creates a single-entry matrix from a real number.</summary>
    class operator Explicit(X: TASR): TRealMatrix;

    class operator Negative(const A: TRealMatrix): TRealMatrix;
    class operator Add(const A, B: TRealMatrix): TRealMatrix;
    class operator Add(const A: TRealMatrix; const X: TASR): TRealMatrix;
    class operator Subtract(const A, B: TRealMatrix): TRealMatrix;
    class operator Subtract(const A: TRealMatrix; const X: TASR): TRealMatrix;
    class operator Multiply(const A, B: TRealMatrix): TRealMatrix;
    class operator Multiply(const X: TASR; const A: TRealMatrix): TRealMatrix;
    class operator Multiply(const A: TRealMatrix; const X: TASR): TRealMatrix;
    class operator Divide(const A: TRealMatrix; const X: TASR): TRealMatrix;
    class operator Equal(const A, B: TRealMatrix): Boolean; inline;
    class operator NotEqual(const A, B: TRealMatrix): Boolean; inline;
    class operator Trunc(const A: TRealMatrix): TRealMatrix;
    class operator Round(const A: TRealMatrix): TRealMatrix;
    class operator LessThan(const A, B: TRealMatrix): Boolean; inline;
    class operator LessThanOrEqual(const A, B: TRealMatrix): Boolean; inline;
    class operator GreaterThan(const A, B: TRealMatrix): Boolean; inline;
    class operator GreaterThanOrEqual(const A, B: TRealMatrix): Boolean; inline;

    // ***
    // Tests
    // ***

    /// <summary>Returns true iff the matrix consists of a single row.</summary>
    function IsRow: Boolean; inline;

    /// <summary>Returns true iff the matrix consists of a single column.</summary>
    function IsColumn: Boolean; inline;

    /// <summary>Returns true iff the matrix is square.</summary>
    function IsSquare: Boolean; inline;

    /// <summary>Returns true iff the matrix is the N-dimensional identity
    ///  matrix.</summary>
    function IsIdentity(const Epsilon: Extended = 0): Boolean;

    /// <summary>Returns true iff the matrix is the m×n zero matrix (that is, if
    ///  it consists of only zeros).</summary>
    function IsZeroMatrix(const Epsilon: Extended = 0): Boolean;

    /// <summary>Returns true iff all non-zero entries are located on the main
    ///  diagonal.</summary>
    function IsDiagonal(const Epsilon: Extended = 0): Boolean;

    /// <summary>Returns true iff the matrix is square and all non-zero entries
    ///  are located on the antidiagonal.</summary>
    function IsAntiDiagonal(const Epsilon: Extended = 0): Boolean;

    /// <summary>Returns true iff the matrix is the N-dimensional reversal
    ///  matrix.</summary>
    function IsReversal(const Epsilon: Extended = 0): Boolean;

    /// <summary>Returns true iff all non-zero entries are located on or above
    ///  the main diagonal.</summary>
    /// <remarks>The matrix need not be square in order to be upper diagonal.
    ///  </remarks>
    function IsUpperTriangular(const Epsilon: Extended = 0): Boolean;

    /// <summary>Returns true iff all non-zero entries are located on or below
    ///  the main diagonal.</summary>
    /// <remarks>The matrix need not be square in order to be lower diagonal.
    ///  </remarks>
    function IsLowerTriangular(const Epsilon: Extended = 0): Boolean;

    /// <summary>Returns true iff the matrix is upper triangular or lower
    ///  triangular.</summary>
    function IsTriangular(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Returns the column index of the first non-zero element on a
    ///  given row.</summary>
    /// <returns>The column index of the first non-zero element on the given
    ///  row or -1 if the row consists of only zeros.</returns>
    function PivotPos(ARow: Integer; const Epsilon: Extended = 0): Integer;

    /// <summary>Returns whether or not a given row consists of only zeros.
    ///  </summary>
    function IsZeroRow(ARow: Integer; const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Returns whether or not a given row consists of only zeros except
    ///  for the right-most entry on the row.</summary>
    function IsEssentiallyZeroRow(ARow: Integer;
      const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is in row echelon form.</summary>
    function IsRowEchelonForm(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether the matrix is in reduced row echelon form.
    ///  A matrix that is in reduced row echelon form is also in row echelon
    ///  form.</summary>
    function IsReducedRowEchelonForm(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determins whether the matrix is scalar, that is, if it is a
    ///  multiple of the identity matrix.</summary>
    function IsScalar(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether the matrix is symmetric.</summary>
    function IsSymmetric(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is skew-symmetric.</summary>
    function IsSkewSymmetric(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is orthogonal.</summary>
    function IsOrthogonal(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is normal.</summary>
    function IsNormal(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix consists only of ones and zeros.
    ///  </summary>
    function IsBinary(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether the matrix is a permutation matrix.</summary>
    function IsPermutation(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether the matrix is circulant.</summary>
    /// <remarks>A circulant matrix need not be square.</remarks>
    function IsCirculant(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether the matrix is a Toeplitz matrix.</summary>
    /// <remarks>A Toeplitz matrix need not be square.</remarks>
    function IsToeplitz(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether the matrix is a Hankel matrix.</summary>
    /// <remarks>A Hankel matrix need not be square.</remarks>
    function IsHankel(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether the matrix is upper Hessenberg.</summary>
    /// <remarks>An upper Hessenberg matrix is always square.</remarks>
    function IsUpperHessenberg(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether the matrix is lower Hessenberg.</summary>
    /// <remarks>A lower Hessenberg matrix is always square.</remarks>
    function IsLowerHessenberg(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether the matrix is tridiagonal.</summary>
    /// <remarks>A tridiagonal matrix is always square.</remarks>
    function IsTridiagonal(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is upper bidiagonal.</summary>
    /// <remarks>An upper bidiagonal matrix is always square.</remarks>
    function IsUpperBidiagonal(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is lower bidiagonal.</summary>
    /// <remarks>A lower bidiagonal matrix is always square.</remarks>
    function IsLowerBidiagonal(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is bidiagonal.</summary>
    /// <remarks>A bidiagonal matrix is always square.</remarks>
    function IsBidiagonal(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is centrosymmetric.</summary>
    function IsCentrosymmetric(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is a Vandermonde matrix.</summary>
    /// <remarks>A Vandermonde matrix need not be square.</remarks>
    function IsVandermonde(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether the matrix commutes with a given matrix.
    ///  </summary>
    function CommutesWith(const A: TRealMatrix;
      const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is idempotent, that is, if A^2 =
    ///  A.</summary>
    /// <remarks>An idempotent matrix is always square.</remarks>
    function IsIdempotent(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is an involution, that is, if A^2 =
    ///  I.</summary>
    /// <remarks>An involutory matrix is always square.</remarks>
    function IsInvolution(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is positive definite.</summary>
    /// <remarks>A positive definite matrix is always square and symmetric.
    ///  </remarks>
    function IsPositiveDefinite(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is positive semidefinite.</summary>
    /// <remarks>A positive semidefinite matrix is always square and symmetric.
    ///  </remarks>
    function IsPositiveSemiDefinite(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is negative definite.</summary>
    /// <remarks>A negative definite matrix is always square and symmetric.
    ///  </remarks>
    function IsNegativeDefinite(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is negative semidefinite.</summary>
    /// <remarks>A negative semidefinite matrix is always square and symmetric.
    ///  </remarks>
    function IsNegativeSemiDefinite(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is indefinite.</summary>
    /// <remarks>An indefinite matrix is always square and symmetric.</remarks>
    function IsIndefinite(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the square matrix is nilpotent.</summary>
    /// <exception cref="EMathException">Raised if the matrix isn't square or if
    ///  the method failed to determine nilpotency.</exception>
    function IsNilpotent(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Returns the nilpotency index of the square matrix.</summary>
    /// <returns>The nilpotency index if the matrix is nilpotent or -1 otherwise.
    ///  </returns>
    /// <exception cref="EMathException">Raised if the matrix isn't square or if
    ///  the method failed to determine nilpotency.</exception>
    function NilpotencyIndex(const Epsilon: Extended = 0): Integer;

    /// <summary>Returns true iff the matrix is diagonally dominant, that is,
    ///  iff for every row the absolute value of the diagonal entry is greater
    ///  than or equal to the deleted absolute row sum.</summary>
    /// <remarks>Only defined for square matrices.</remarks>
    /// <exception cref="EMathException">Raised if the matrix isn't square.
    ///  </exception>
    function IsDiagonallyDominant: Boolean;

    /// <summary>Returns true iff the matrix is strictly diagonally dominant,
    ///  that is, iff for every row the absolute value of the diagonal entry is
    ///  greater than the deleted absolute row sum.</summary>
    /// <remarks>Only defined for square matrices.</remarks>
    /// <exception cref="EMathException">Raised if the matrix isn't square.
    ///  </exception>
    function IsStrictlyDiagonallyDominant: Boolean;

    /// <summary>Returns true iff the matrix is positive, that is, if all
    ///  elements are positive.</summary>
    function IsPositive(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Returns true iff the matrix is non-negative, that is, if all
    ///  elements are non-negative.</summary>
    function IsNonNegative(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Returns true iff the matrix is negative, that is, if all
    ///  elements are negative.</summary>
    function IsNegative(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Returns true iff the matrix is non-positive, that is, if all
    ///  elements are non-positive.</summary>
    function IsNonPositive(const Epsilon: Extended = 0): Boolean; inline;

    // ***
    // Operations and computations
    // ***

    /// <summary>Sets all elements to zero above the main diagonal.</summary>
    procedure MakeLowerTriangular;

    /// <summary>Sets all elements to zero below the main diagonal.</summary>
    procedure MakeUpperTriangular;

    /// <summary>Sets all elements to zero below the main subdiagonal.</summary>
    procedure MakeUpperHessenberg;

    /// <summary>Returns the square of the matrix.</summary>
    function Sqr: TRealMatrix; inline;

    /// <summary>Returns the transpose of the matrix.</summary>
    function Transpose: TRealMatrix;

    /// <summary>Returns the Hermitian square of the matrix.</summary>
    function HermitianSquare: TRealMatrix; inline;

    /// <summary>Returns the modulus of the matrix.</summary>
    /// <remarks>The modulus is the unique positive-semidefinite square root of
    ///  the Hermitian square.</remarks>
    function Modulus: TRealMatrix; inline;

    /// <summary>Returns the determinant of the matrix.</summary>
    function Determinant: TASR;

    /// <summary>Returns the trace of the matrix.</summary>
    function Trace: TASR;

    /// <summary>Returns the inverse of the matrix, if it exists.</summary>
    /// <exception cref="EMathException">Thrown if the matrix doesn't have an
    ///  inverse. This happens if the matrix isn't square or if its determinant
    ///  is zero (iff it doesn't have full rank).</exception>
    /// <remarks>The current matrix is not modified by the method.</remarks>
    /// <see cref="TryInvert" />
    function Inverse: TRealMatrix;

    /// <summary>Attempts to invert the matrix, which has to be square.</summary>
    /// <param name="AInverse">Receives the inverse of the matrix, if it can
    ///  be computed.</param>
    /// <returns>True iff the matrix can be inverted, that is, if and only if
    ///  it is non-singular.</returns>
    /// <exception cref="EMathException">Raised if the matrix isn't square.
    ///  </exception>
    /// <see cref="Inverse" />
    function TryInvert(out AInverse: TRealMatrix): Boolean;

    /// <summary>Returns the Moore-Penrose pseudoinverse of the matrix.</summary>
//    function Pseudoinverse: TRealMatrix; experimental;

    /// <summary>Returns the rank of the matrix.</summary>
    function Rank: Integer; inline;

    /// <summary>Returns the nullity of the matrix.</summary>
    function Nullity: Integer; inline;

    /// <summary>Returns the condition number of the matrix using a specified
    ///  matrix norm.</summary>
    /// <exception cref="EMathException">Raised if the matrix isn't square and
    ///  invertible.</exception>
    function ConditionNumber(p: Integer = 2): TASR;

    /// <summary>Determines whether the matrix, which has to be square, is
    ///  singular.</summary>
    /// <returns>True iff the matrix is singular.</returns>
    /// <exception cref="EMathException">Thrown if the matrix isn't square.
    ///  </exception>
    function IsSingular: Boolean;

    /// <summary>Returns the Frobenius norm of the matrix, that is, the square
    ///  root of the sum of the squares of all its elements.</summary>
    /// <remarks>This norm is submultiplicative.</remarks>
    function Norm: TASR; inline;

    /// <summary>Returns the square of the Frobenius norm of the matrix.</summary>
    function NormSqr: TASR; inline;

    /// <summary>Returns the (vector) p-norm of the matrix.</summary>
    function pNorm(const p: TASR): TASR; inline;

    /// <summary>Returns the max norm of the matrix, that is, the largest
    ///  absolute value of its elements.</summary>
    /// <remarks>This norm is NOT submultiplicative.</remarks>
    function MaxNorm: TASR; inline;

    /// <summary>Returns the sum norm of the matrix, that is, the sum of all
    ///  absolute values of the entries.</summary>
    /// <remarks>This norm is submultiplicative.</remarks>
    function SumNorm: TASR; inline;

    /// <summary>Returns the (vector) k-norm of the matrix.</summary>
    function kNorm(const k: Integer): TASR; inline;

    /// <summary>Returns the maximum column sum norm of the matrix.</summary>
    /// <remarks>This norm is submultiplicative. It is the operator norm induced
    ///  by the vector 1-norm (l_1).</remarks>
    function MaxColSumNorm: TASR;

    /// <summary>Returns the maximum row sum norm of the matrix.</summary>
    /// <remarks>This norm is submultiplicative. It is the operator norm induced
    ///  by the vector maximum norm (l_∞).</remarks>
    function MaxRowSumNorm: TASR;

    /// <summary>Returns the spectral norm of the matrix, that is, the largest
    ///  singular value.</summary>
    /// <remarks>This norm is submultiplicative. It is the operator norm induced
    ///  by the vector 2-norm (l_2).</remarks>
    function SpectralNorm: TASR; inline;

    /// <summary>Returns a deleted absolute row sum, that is, the sum of all
    ///  absolute-value entries on a given row except the row's diagonal entry
    ///  (if it has a diagonal entry).</summary>
    function DeletedAbsoluteRowSum(ARow: Integer): TASR;

    /// <summary>Swaps two rows in a matrix (in place).</summary>
    /// <returns>A reference to the original matrix.</returns>
    function RowSwap(ARow1, ARow2: Integer): TRealMatrix;

    /// <summary>Multiplies a single row in a matrix with a constant real number
    ///  (in place).</summary>
    /// <returns>A reference to the original matrix.</returns>
    function RowScale(ARow: Integer; AFactor: TASR): TRealMatrix;

    /// <summary>Adds a multiple of one row to a second row in a matrix (in place).
    ///  </summary>
    /// <returns>A reference to the original matrix.</returns>
    function RowAddMul(ATarget, ASource: Integer; AFactor: TASR;
      ADefuzz: Boolean = False; AFirstCol: Integer = 0): TRealMatrix;

    /// <summary>Performs a given row operation to the matrix. The row operation
    ///  is given by a TRowOperationRecord.</summary>
    /// <returns>A reference to the original matrix.</returns>
    function RowOp(const ARowOp: TRealRowOperationRecord): TRealMatrix;

    /// <summary>Uses row operations to find a row echelon form of the matrix.
    ///  </summary>
    /// <param name="CollectRowOps">If set to true, the row operations performed
    ///  will be saved to the row op buffer.</param>
    /// <returns>Returns a row echelon form of the matrix.</returns>
    /// <remarks>The original matrix is not altered by this method; all row
    ///  operations are performed on a copy.</remarks>
    function RowEchelonForm(CollectRowOps: Boolean = False): TRealMatrix;

    /// <summary>Uses row operations to find the reduced row echelon form of the
    ///  matrix.</summary>
    /// <param name="CollectRowOps">If set to true, the row operations performed
    ///  will be saved to the row op buffer.</param>
    /// <returns>Returns the reduced row echelon form of the matrix.</returns>
    /// <remarks>The original matrix is not altered by this method; all row
    ///  operations are performed on a copy.</remarks>
    function ReducedRowEchelonForm(CollectRowOps: Boolean = False): TRealMatrix;

    /// <summary>Returns the number of zero rows in the matrix.</summary>
    function NumZeroRows(const AEpsilon: TASR = 0): Integer;

    /// <summary>Returns the number of zero rows at the bottom of the matrix.
    ///  </summary>
    function NumTrailingZeroRows(const AEpsilon: TASR = 0): Integer;

    /// <summary>Performs the Gram-Schmidt orthonormalization procedure on the
    ///  columns of the matrix; the result is returned.</summary>
    /// <remarks>The current matrix is not modified by the method.</remarks>
    function GramSchmidt: TRealMatrix;

    procedure InplaceGramSchmidt(FirstCol, LastCol: Integer);

    /// <summary>Returns the matrix with zero or more columns removed so that
    ///  the remaining columns form a basis for the column space (range) of the
    ///  matrix.</summary>
    function ColumnSpaceBasis: TRealMatrix;

    function ColumnSpaceProjection(const AVector: TRealVector): TRealVector;

    /// <summary>Returns the Euclidean distance between a vector and the column
    ///  space of the matrix.</summary>
    function DistanceFromColumnSpace(const AVector: TRealVector): TASR; // empty matrix aware

    /// <summary>Computes and returns an upper Hessenberg matrix that is similar
    ///  to the original matrix, which must be square.</summary>
    /// <param name="A2x2Bulge">If true, the original matrix MUST be a PROPER
    ///  upper Hessenberg matrix except for a 2×2 bulge at the upper-left
    ///  position. In this case, a different algorithm suitable for this
    ///  particular case might be used, which is faster than the general-case
    ///  algorithm.</param>
    /// <remarks>If the original matrix is symmetric, the result is tridiagonal.
    ///  </remarks>
    /// <exception cref="EMathException">Raised if the matrix isn't square.
    ///  </exception>
    function SimilarHessenberg(A2x2Bulge: Boolean = False): TRealMatrix;

    /// <summary>Returns the array of eigenvalues of the matrix.</summary>
    /// <returns>A complex vector of the n eigenvalues.</returns>
    /// <exception cref="EMathException">Raised if the eigenvalues couldn't be
    ///  computed, for any reason.</exception>
    function UnsortedEigenvalues: TComplexVector;

    function eigenvalues: TComplexVector;

    /// <summary>An alias for <c>eigenvalues</c>.</summary>
    function spectrum: TComplexVector; inline; // alias

    /// <summary>Computes the eigenvalues and eigenvectors of the matrix.
    ///  </summary>
    /// <param name="AEigenvalues">Receives the eigenvalues.</param>
    /// <param name="AEigenvectors">Receives a real n×n matrix, the columns
    ///  of which are linearly independent eigenvectors of the matrix in the same
    ///  order as the eigenvalues.</param>
    /// <param name="ASkipVerify">If false (the default), the method verifies
    ///  that the obtained vectors really are linearly independent eigenvectors
    ///  of the matrix, in the same order as the eigenvalues. If true, this
    ///  verification is skipped. In any case, the eigenvalues are verified.
    ///  </param>
    /// <returns>True iff the eigenvalues and eigenvectors were successfully
    ///  computed and all checks complete successfully.</returns>
    /// <remarks>Currently only implemented for symmetric matrices.</remarks>
    /// <exception cref="EMathException">Raised if the matrix isn't square
    ///  and symmetric.</exception>
    function eigenvectors(out AEigenvalues: TRealVector;
      out AEigenvectors: TRealMatrix; ASkipVerify: Boolean = False): Boolean;

    /// <summary>Returns true iff the given vector is an eigenvector of the
    ///  square matrix.</summary>
    /// <exception cref="EMathException">Raised if the matrix isn't square or
    ///  if the given vector is of a different dimension.</exception>
    function IsEigenvector(const u: TRealVector;
      const Epsilon: Extended = 0): Boolean;

    /// <summary>Returns the associated eigenvalue of a given eigenvector.
    ///  </summary>
    /// <exception cref="EMathException">Raised if the given vector isn't an
    ///  eigenvector of the matrix. In particular, this happens if the matrix
    ///  isn't square or if the vector is the zero vector of its dimension or
    //// of a different dimension compared to the matrix.</exception>
    function EigenvalueOf(const u: TRealVector;
      const Epsilon: Extended = 0): TASR;

    /// <summary>Tries to find the associated eigenvalue of a given vector and
    ///  returns whether the given vector was an eigenvector or not.</summary>
    /// <param name="u">The given vector that might or might not be an eigenvector
    ///  of the matrix.</param>
    /// <param name="AEigenvalue">Receives the associated eigenvalue, if the
    ///  given vector turned out to be an eigenvector.</param>
    /// <returns>True iff the given vector is an eigenvector of the matrix.
    ///  </returns>
    /// <exception cref="EMathException">Raised if the matrix isn't square
    ///  or if the dimension of the given vector doesn't match the size of the
    ///  matrix.</exception>
    function TryEigenvalueOf(const u: TRealVector; out AEigenvalue: TASR;
      const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether (lambda, u) is an eigenpair of the matrix.
    ///  </summary>
    function IsEigenpair(const lambda: TASR; const u: TRealVector;
      const Epsilon: Extended = 0): Boolean;

    /// <summary>Computes an eigenvector associated with a given eigenvalue.
    ///  </summary>
    /// <param name="lambda">The eigenvalue to find an associated eigenvalue for.
    ///  </param>
    /// <returns>A normalized eigenvector associated with the given eigenvalue.
    ///  </returns>
    /// <exception cref="EMathException">Raised if <c>lambda</c> isn't an
    ///  eigenvalue of the matrix. In particular, this happens if the matrix
    ///  isn't square. Also raised if the algorithm fails to compute an
    ///  eigenvector, for any reason.</exception>
    function EigenvectorOf(const lambda: TASR): TRealVector;

    /// <summary>Returns the spectral radius of the matrix, that is, the largest
    ///  absolute value of the eigenvalues.</summary>
    /// <remarks>The current implementation only works if all eigenvalues are
    ///  real; otherwise, an exception is raised.</remarks>
    function SpectralRadius: TASR; inline;

    /// <summary>Returns the array of singular values of the matrix.</summary>
    /// <remarks><para>The singular values are the eigenvalues of <c>sqrt(A* A)</c>,
    ///  or, equivalently, the square roots of the eigenvalues of the Hermitian
    ///  square <c>A* A</c>.</para>
    ///  <para>The singular values are listed in decreasing order.</para></remarks>
    function SingularValues: TRealVector;

    /// <summary>Returns a copy of the matrix with each element replaced with
    ///  its absolute value.</summary>
    function Abs: TRealMatrix;

    /// <summary>Replaces all elements that are extremely close to zero with
    ///  zero.</summary>
    /// <returns>A reference to the matrix.</returns>
    /// <remarks>The matrix is altered by this method; the result only points
    ///  to the original matrix that has been modified.</remarks>
    function Defuzz(const Eps: Double = 1E-8): TRealMatrix;

    /// <summary>Creates a new matrix that is identical to this matrix.</summary>
    function Clone: TRealMatrix; // empty matrix aware

    /// <summary>Returns the elements of the matrix as a real vector. The elements
    ///  are obtained from the matrix in column-major order. In particular, this
    ///  works well if the matrix is either a single row or a single column.
    ///  </summary>
    /// <see cref="AsVector" />
    function Vectorization: TRealVector; inline;

    /// <summary>Returns the elements of the matrix as a real vector. The elements
    ///  are obtained from the matrix in row-major order. In particular, this
    ///  works well if the matrix is either a single row or a single column.
    ///  </summary>
    /// <see cref="Vectorization" />
    /// <see cref="Data" />
    function AsVector: TRealVector; inline;

    /// <summary>Augments the matrix with a new matrix.</summary>
    /// <param name="A">The real matrix to augment the current matrix with. This
    ///  matrix must have the same number of rows as the current matrix.</param>
    /// <returns>A real matrix with A augmented to the right of the current
    ///  matrix.</return>
    /// <remarks>The current matrix is not modified by the method. A vector
    ///  may be used as the argument, since it will be automatically promoted to
    ///  the corresponding single-column matrix.</remarks>
    /// <see cref="AddRow" />
    function Augment(const A: TRealMatrix): TRealMatrix; overload; // empty matrix aware

    /// <summary>Augments the matrix with a zero column.</summary>
    /// <returns>A real matrix with a zero column augmented to the right of the
    ///  current matrix.</return>
    /// <remarks>The current matrix is not modified by the method.</remarks>
    function Augment: TRealMatrix; overload; inline;

    /// <summary>Replaces a specific row with a new set of values.</summary>
    procedure SetRow(ARowIndex: Integer; const ARow: array of TASR);

    /// <summary>Replaces a specific column with a new set of values.</summary>
    procedure SetCol(AColIndex: Integer; const ACol: array of TASR);

    /// <summary>Returns the (m-1)×(n-1) submatrix obtained by removing a single
    ///  row and a single column from the matrix.</summary>
    /// <remarks>The current matrix is not modified by the method.</remarks>
    function Submatrix(ARowToRemove: Integer = 0;
      AColToRemove: Integer = 0; AAllowEmpty: Boolean = False): TRealMatrix; overload; // empty matrix aware

    /// <summary>Returns a submatrix of the current matrix using the specified
    ///  rows and columns.</summary>
    /// <remarks>The current matrix is not modified by the method.</remarks>
    function Submatrix(const ARows: array of Integer;
      const ACols: array of Integer): TRealMatrix; overload;

    /// <summary>Returns a principal submatrix of the current matrix using the
    ///  specified rows and columns.</summary>
    /// <remarks>The current matrix is not modified by the method.</remarks>
    function Submatrix(const ARows: array of Integer): TRealMatrix; overload;

    /// <summary>Returns a leading principal submatrix of the matrix.</summary>
    function LeadingPrincipalSubmatrix(const ASize: Integer): TRealMatrix;

    /// <summary>Returns the submatrix obtained by removing the last column.
    ///  </summary>
    /// <remarks>The current matrix is not modified by the method.</remarks>
    function Lessened: TRealMatrix;

    /// <summary>Returns the determinant of the submatrix obtained by removing
    ///  one specific row and one specific column.</summary>
    function Minor(ARow, ACol: Integer): TASR; inline;

    /// <summary>Returns (-1)^(ARow + ACol) times the corresponding minor.
    ///  </summary>
    function Cofactor(ARow, ACol: Integer): TASR; inline;

    /// <summary>Returns the cofactor matrix of the matrix.</summary>
    function CofactorMatrix: TRealMatrix;

    /// <summary>Returns the adjugate matrix of the matrix, that is, the
    ///  transpose of the cofactor matrix.</summary>
    function AdjugateMatrix: TRealMatrix; inline;

    /// <summary>Returns a copy of the matrix with each element replaced by
    ///  the result of a real-valued function applied to it.</summary>
    /// <remarks>The current matrix is not modified by the method.</remarks>
    function Apply(AFunction: TRealFunctionRef): TRealMatrix;

    /// <summary>Replaces each entry of the matrix satisfying the given predicate
    ///  with a given value.</summary>
    /// <param name="APredicate">A predicate for real numbers. Each matrix entry
    ///  satisfying this predicate will be replaced with <c>ANewValue</c>.</param>
    /// <param name="ANewValue">The value to replace entries with.</param>
    /// <returns>A copy of the current matrix but with all entries satisfying
    ///  <c>APredicate</c> replaced with <c>ANewValue</c>.</returns>
    /// <remarks>The current matrix is not modified by this method.</remarks>
    function Replace(APredicate: TPredicate<TASR>;
      const ANewValue: TASR): TRealMatrix; overload;

    /// <summary>Replaces each entry with a specified value with a new value.
    ///  </summary>
    /// <param name="AOldValue">The value to search for in the original matrix.
    ///  </param>
    /// <param name="ANewValue">The value to replace with.</param>
    /// <returns>A copy of the current matrix but with each entry originally
    ///  eaual to <c>AOldValue</c> replaced with <c>ANewValue</c>.</returns>
    /// <remarks>The current matrix is not modified by this method.</remarks>
    function Replace(const AOldValue, ANewValue: TASR;
      const Epsilon: Extended = 0): TRealMatrix; overload;

    /// <summary>Sets each entry of the matrix to the same, new, value.</summary>
    /// <param name="ANewValue">The new value to set each entry to.</param>
    /// <returns>A matrix of the same size as the original matrix but with each
    ///  entry equal to <c>ANewValue</c>.</returns>
    /// <remarks>The current matrix is not modified by this method.</remarks>
    function Replace(const ANewValue: TASR): TRealMatrix; overload; {copy}

    /// <summary>Returns either a single-line textual representation of the
    /// matrix of the form ((M00, M01, ...), (M10, M11, ...), ...) or a multi-
    /// line tabular representation.</summary>
    function str(const AOptions: TFormatOptions): string; // mainly for debugging

    /// <summary>Adds a row to the matrix.</summary>
    /// <remarks>This is more of a computing-related function than a mathematical
    ///  operation. Notice that it does suffer from the
    ///  <c>SetLength(X, Length(X) + 1)</c> problem.</remarks>
    /// <see cref="Augment" />
    procedure AddRow(const ARow: array of TASR);

    /// <summary>Sorts the elemenets of the matrix.</summary>
    /// <remarks>This operation sorts the elements of the original matrix,
    ///  and returns a reference to it.</remarks>
    /// <returns>A reference to the original matrix, which has been sorted.
    ///  </returns>
    function Sort(AComparer: IComparer<TASR>): TRealMatrix;
    function SafeSort(AComparer: IComparer<TASR>): TRealMatrix;

    /// <summary>Shuffles the elemenets of the matrix.</summary>
    /// <remarks>This operation shuffles the elements of the original matrix,
    ///  and returns a reference to it.</remarks>
    /// <returns>A reference to the original matrix, which has been shuffled.
    ///  </returns>
    function Shuffle: TRealMatrix;

    /// <summary>Reverses the order of the elements in the matrix (in the
    /// row-major sense).</summary>
    /// <remarks>This operation reverses the elements of the original matrix,
    ///  and returns a reference to it.</remarks>
    /// <returns>A reference to the original matrix, which has been reversed.
    ///  </returns>
    function Reverse: TRealMatrix;

    // ***
    // Decompositions
    // ***

    /// <summary>Produces a LU decomposition of the matrix, which has to be square,
    ///  that is, finds a permutation matrix P, a unit lower triangular matrix L,
    ///  and an upper triangular matrix U such that Self = P.Transpose * L * U.
    ///  </summary>
    /// <param name="P">Receives the permutation matrix P.</param>
    /// <param name="L">Receives the unit lower triangular matrix L.</param>
    /// <param name="U">Receives the upper triangular matrix U.</param>
    /// <exception cref="EMathException">Raised if the matrix isn't square.
    ///  </exception>
    procedure LU(out P, L, U: TRealMatrix);

    /// <summary>Computes the Cholesky decomposition of the square matrix, if
    ///  possible.</summary>
    /// <param name="R">Receives the upper triangular Cholesky factor R such
    ///  that Self = R.Transpose * R.</param>
    /// <returns>True iff the decomposition was successfully computed; this
    ///  happens precisely when the matrix is positive definite.</returns>
    /// <exception cref="EMathException">Raised if the matrix isn't square.
    ///  </exception>
    function Cholesky(out R: TRealMatrix): Boolean;

    /// <summary>Produces an orthogonal matrix Q and an upper triangular matrix
    ///  R such that Self = Q * R.</summary>
    /// <remarks>QR decomposition is only implemented for square and tall matrices.
    ///  </remarks>
    /// <exception cref="EMathException">Raised if the matrix is wide, that is,
    ///  if <c>Size.Cols &gt; Size.Rows</c>.</exception>
    procedure QR(out Q, R: TRealMatrix);

    /// <summary>Finds an upper Hessenberg matrix A and an orthogonal matrix
    ///  U such that Self = U A U.Transpose.</summary>
    procedure Hessenberg(out A, U: TRealMatrix);

  end;

/// <summary>Computes and returns the Nth power of the square matrix A.</summary>
/// <remarks>The zeroth power is the identity matrix of the same size as A.
///  Negative powers are defined iff A is invertible, and if so the result
///  is the |N|th power of the inverse of A (which is equal to the inverse
///  of the |N|th power of A).</remarks>
function mpow(const A: TRealMatrix; const N: Integer): TRealMatrix; overload;

/// <summary>Returns the unique positive semidefinite square root of a given
///  positive semidefinite symmetric matrix.</summary>
function msqrt(const A: TRealMatrix): TRealMatrix; overload;

function SameMatrix(const A, B: TRealMatrix;
  const Epsilon: Extended = 0): Boolean; overload; inline;
function SameMatrixEx(const A, B: TRealMatrix;
  const Epsilon: Extended = 0): Boolean; overload; inline;

/// <summary>Returns the zero matrix of a given size.</summary>
function ZeroMatrix(const ASize: TMatrixSize): TRealMatrix; inline;

/// <summary>Returns the identity matrix of a given size.</summary>
function IdentityMatrix(ASize: Integer): TRealMatrix; // empty matrix aware

/// <summary>Returns the reversal matrix of a given size.</summary>
function ReversalMatrix(ASize: Integer): TRealMatrix;

/// <summary>Returns a random matrix of a given size. The elements are real
///  numbers in [0, 1).</summary>
function RandomMatrix(const ASize: TMatrixSize): TRealMatrix;

/// <summary>Returns a random matrix of a given size. The elements are integers
///  in [a, b).</summary>
function RandomIntMatrix(const ASize: TMatrixSize; a, b: Integer): TRealMatrix;

/// <summary>Returns a diagonal matrix constructed using values from
///  a given array of real numbers.</summary>
/// <see cref="DirectSum" />
function diag(const AElements: array of TASR): TRealMatrix; overload;

/// <summary>Returns a diagonal matrix constructed using values from
///  a given real vector.</summary>
/// <see cref="DirectSum" />
function diag(const AElements: TRealVector): TRealMatrix; overload; inline;

/// <summary>Returns the outer product between two vectors.</summary>
function OuterProduct(const u, v: TRealVector): TRealMatrix; overload; inline;

/// <summary>Returns the n×n circulant matrix whose first row is a given vector.
///  </summary>
function CirculantMatrix(const AElements: array of TASR): TRealMatrix; overload;

/// <summary>Returns the Toeplitz matrix with a given first row and a given first
///  column.</summary>
function ToeplitzMatrix(const AFirstRow,
  AFirstCol: array of TASR): TRealMatrix; overload;

/// <summary>Returns the Hankel matrix with a given first row and a given last
///  column.</summary>
function HankelMatrix(const AFirstRow,
  ALastCol: array of TASR): TRealMatrix; overload;

/// <summary>Returns the backward shift matrix of a given size.</summary>
function BackwardShiftMatrix(ASize: Integer): TRealMatrix;

/// <summary>Returns the forward shift matrix of a given size.</summary>
function ForwardShiftMatrix(ASize: Integer): TRealMatrix;

/// <summary>Returns a Vandermonde matrix produced by a given vector.</summary>
/// <param name="AElements">The vector used as the second column in the matrix.
///  </param>
/// <param name="ACols">The number of columns in the matrix. If omitted,
///  the matrix will be square.</param>
function VandermondeMatrix(const AElements: array of TASR;
  ACols: Integer = 0): TRealMatrix; overload;

/// <summary>Returns a Hilbert matrix of a specific size, which need not be
///  square. Notice that the argument may be an integer, in which case a square
///  matrix is produced.</summary>
function HilbertMatrix(const ASize: TMatrixSize): TRealMatrix;

/// <summary>Returns the matrix for a rotation in a given coordinate plane in
///  some dimension.</summary>
/// <param name="AAngle">The angle of the rotation (in radians).</param>
/// <param name="ADim">The dimension of the vector space; the size of the
///  matrix.</param>
/// <param name="AIndex1">The index of the first coordinate that varies in the
///  plane in which the rotation takes place.</param>
/// <param name="AIndex2">The index of the second coordinate that varies in the
///  plane in which the rotation takes place.</param>
/// <remarks>A rotation matrix like this is also called a Givens rotation.</remarks>
function RotationMatrix(AAngle: TASR; ADim: Integer = 2; AIndex1: Integer = 0;
  AIndex2: Integer = 1): TRealMatrix; overload;

function RotationMatrix(AAngle: TASR; AAxis: TRealVector): TRealMatrix; overload;

/// <summary>Returns the matrix for a reflection in a hyperplane in some dimension.
///  </summary>
/// <param name="u">A vector perpendicular to the hyperplane.</param>
/// <remarks>A reflection matrix like this is also called a Householder matrix.
///  </remarks>
function ReflectionMatrix(const u: TRealVector): TRealMatrix; overload;

/// <summary>Returns the matrix for a reflection in a hyperplane in some dimension.
///  </summary>
/// <param name="u">A unit vector perpendicular to the hyperplane.</param>
/// <remarks>A reflection matrix like this is also called a Householder matrix.
///  The vector u MUST be a unit vector.</remarks>
function QuickReflectionMatrix(const u: TRealVector): TRealMatrix; overload; inline;

/// <summary>Returns the Hadamard product between two matrices of the same
///  size, that is, the matrix obtained by taking element-wise products.</summary>
function HadamardProduct(const A, B: TRealMatrix): TRealMatrix; overload;

/// <summary>Returns the direct sum of two matrices.</summary>
/// <see cref="diag" />
function DirectSum(const A, B: TRealMatrix): TRealMatrix; overload; inline;

/// <summary>Returns the direct sum of an open array of matrices.</summary>
/// <see cref="diag" />
function DirectSum(const Blocks: array of TRealMatrix): TRealMatrix; overload;

/// <summary>Determines whether two matrices commute or not.</summary>
function Commute(const A, B: TRealMatrix;
  const Epsilon: Extended = 0): Boolean; overload; inline;

function accumulate(const A: TRealMatrix; AStart: TASR;
  AAccumulator: TAccumulator<TASR>): TASR; overload; inline;

/// <summary>Returns the sum of all elements of the matrix.</summary>
function sum(const A: TRealMatrix): TASR; overload; inline;

/// <summary>Returns the arithmetic mean of all elements of the matrix.</summary>
function ArithmeticMean(const A: TRealMatrix): TASR; overload; inline;

/// <summary>Returns the geometric mean of all elements of the matrix.</summary>
function GeometricMean(const A: TRealMatrix): TASR; overload; inline;

/// <summary>Returns the harmonic mean of all elements of the matrix.</summary>
function HarmonicMean(const A: TRealMatrix): TASR; overload; inline;

/// <summary>Returns the product of all elements of the matrix.</summary>
function product(const A: TRealMatrix): TASR; overload; inline;

/// <summary>Returns the largest value in the matrix.</summary>
function max(const A: TRealMatrix): TASR; overload; inline;

/// <summary>Returns the smallest value in the matrix.</summary>
function min(const A: TRealMatrix): TASR; overload; inline;

/// <summary>Returns true iff there exists an entry of the matrix satisfying
///  the given predicate.</summary>
function exists(const A: TRealMatrix; APredicate: TPredicate<TASR>): Boolean; overload;

/// <summary>Returns the number of matrix entries that satisfy the given
///  predicate.</summary>
function count(const A: TRealMatrix; APredicate: TPredicate<TASR>): Integer; overload;

/// <summary>Returns the number of instances of a given value in the matrix.
///  </summary>
function count(const A: TRealMatrix; const AValue: TASR): Integer; overload; inline;

/// <summary>Returns true iff all entries of the matrix satisfy
///  the given predicate.</summary>
function ForAll(const A: TRealMatrix; APredicate: TPredicate<TASR>): Boolean; overload;

/// <summary>Returns true iff a specific value is found in the matrix.</summary>
function contains(const A: TRealMatrix; AValue: TASR): Boolean; overload; inline;

function TryForwardSubstitution(const A: TRealMatrix; const Y: TRealVector;
  out Solution: TRealVector; IsUnitDiagonal: Boolean = False): Boolean; overload;

/// <summary>Solves the matrix equation AX = Y where A is a lower triangular
///  n×n matrix and X and Y are n-dimensional vectors using forward substitution.
///  </summary>
/// <param name="A">A square matrix of size n, which MUST be lower triangular.</param>
/// <param name="Y">An n-dimensional vector.</param>
/// <param name="IsUnitDiagonal">If true, the routine assumes that the main
///  diagonal of <c>A</c> consists of only 1's, without caring about the actual
///  elements on the main diagonal.</param>
/// <returns>The unique solution X of the equation AX = Y, if A is non-singular.</returns>
/// <exception cref="EMathException">Raised if A is not square and non-singular.
///  Also raised if the size of A differs from the dimension of Y.</exception>
function ForwardSubstitution(const A: TRealMatrix; const Y: TRealVector;
  IsUnitDiagonal: Boolean = False): TRealVector; overload;

function TryBackSubstitution(const A: TRealMatrix; const Y: TRealVector;
  out Solution: TRealVector): Boolean; overload;

/// <summary>Solves the matrix equation AX = Y where A is an upper triangular
///  n×n matrix and X and Y are n-dimensional vectors using backward
///  substitution.</summary>
/// <param name="A">A square matrix of size n, which MUST be upper triangular.</param>
/// <param name="Y">An n-dimensional vector.</param>
/// <returns>The unique solution X of the equation AX = Y, if A is non-singular.</returns>
/// <exception cref="EMathException">Raised if A is not square and non-singular.
///  Also raised if the size of A differs from the dimension of Y.</exception>
function BackSubstitution(const A: TRealMatrix; const Y: TRealVector): TRealVector; overload;

/// <summary>Solves the matrix equation AX = Y.</summary>
/// <param name="AAugmented">The augmented matrix [A|Y].</param>
/// <returns>The unique solution X if a unique solution exists.</returns>
/// <exception cref="EMathException">Raised if a unique solution does not
///  exist.</exception>
function SysSolve(const AAugmented: TRealMatrix): TRealVector; overload; inline;

function TrySysSolve(const A: TRealMatrix; const Y: TRealVector;
  out Solution: TRealVector): Boolean; overload;

function TrySysSolve(const A: TRealMatrix; const Y: TRealMatrix;
  out Solution: TRealMatrix): Boolean; overload;

/// <summary>Solves the matrix equation AX = Y.</summary>
/// <param name="A">The matrix of coefficients, A.</param>
/// <param name="Y">The right-hand side of the equation, Y.</param>
/// <returns>The unique solution X if a unique solution exists.</returns>
/// <exception cref="EMathException">Raised if a unique solution does not
///  exist.</exception>
function SysSolve(const A: TRealMatrix; const Y: TRealVector): TRealVector; overload;
function SysSolve(const A: TRealMatrix; const Y: TRealMatrix): TRealMatrix; overload;

/// <summary>Given a set { (x_0, y_0), (x_1, y_1), ..., (x_(k-1), y_(k-1)) } of
///  points, this function determines the polynomial of degree at most n
///  whose graph best connects to the points in the least-squares sense.</summary>
/// <param name="X">The k-dimensional vector of X coordinates.</param>
/// <param name="Y">The k-dimensional vector of Y coordinates.</param>
/// <param name="ADegree">The maximum degree n >= 0 of the polynomial.</param>
/// <returns>A real vector consisting of the n + 1 coefficients c_0, c_1, ..., c_n
///  of the optimal polynomial c_0 + c_1 x + c_2 x^2 + ... + c_n x^n.</returns>
function LeastSquaresPolynomialFit(const X, Y: TRealVector;
  ADegree: Integer): TRealVector; overload;

/// <summary>A quick but unsafe procedure to copy data from one vector
///  to another.</summary>
/// <param name="ASource">The source vector.</param>
/// <param name="AFrom">The first component of the source vector to be copied.
///  </param>
/// <param name="ATo">The last component of the source vector to be copied.
///  </param>
/// <param name="ATarget">The vector to copy to.</param>
/// <param name="ATargetFrom">The index of the first component of the target
///  vector to be overwritten by the copied data.</param>
/// <remarks>The specified components in the source vector MUST exist, and the
///  target vector MUST be large enough to contain all data.</remarks>
procedure VectMove(const ASource: TRealVector; const AFrom, ATo: Integer;
  var ATarget: TRealVector; const ATargetFrom: Integer = 0); overload; inline;

/// <summary>A quick but unsafe procedure to copy data from a vector to a part
///  of a column of a matrix.</summary>
/// <param name="ASource">The source vector.</param>
/// <param name="AFrom">The first component of the source vector to be copied.
///  </param>
/// <param name="ATo">The last component of the source vector to be copied.
///  </param>
/// <param name="ATarget">The matrix to write data to.</param>
/// <param name="ATargetCol">The index of the column of the matrix to write to.
///  </param>
/// <param name="ATargetFirstRow">The index of the first row in the matrix
///  column to overwrite.</param>
/// <remarks>The specified components in the source vector MUST exist, and the
///  target matrix MUST be large enough to contain all data.</remarks>
procedure VectMoveToMatCol(const ASource: TRealVector; const AFrom, ATo: Integer;
  var ATarget: TRealMatrix; const ATargetCol: Integer;
  const ATargetFirstRow: Integer = 0); overload;

/// <summary>A quick but unsafe procedure to copy data from a vector to a part
///  of a row of a matrix.</summary>
/// <param name="ASource">The source vector.</param>
/// <param name="AFrom">The first component of the source vector to be copied.
///  </param>
/// <param name="ATo">The last component of the source vector to be copied.
///  </param>
/// <param name="ATarget">The matrix to write data to.</param>
/// <param name="ATargetRow">The index of the row of the matrix to write to.
///  </param>
/// <param name="ATargetFirstCol">The index of the first column in the matrix
///  row to overwrite.</param>
/// <remarks>The specified components in the source vector MUST exist, and the
///  target matrix MUST be large enough to contain all data.</remarks>
procedure VectMoveToMatRow(const ASource: TRealVector; const AFrom, ATo: Integer;
  var ATarget: TRealMatrix; const ATargetRow: Integer;
  const ATargetFirstCol: Integer = 0); overload; inline;

/// <summary>A quick but unsafe procedure to copy data from one matrix to
///  another.</summary>
/// <param name="ASource">The matrix to copy from.</param>
/// <param name="ARect">A rectangle describing the submatrix to copy; both
///  the top-left and the bottom-right elements are included in the submatrix.
///  </param>
/// <param name="ATarget">The matrix to copy to.</param>
/// <param name="ATargetTopLeft">The top-left element in the destination matrix
///  to be overwritten.</param>
/// <remarks>The specified elements in the source matrix MUST exist, and the
///  target matrix MUST be large enough to contain all data.</remarks>
procedure MatMove(const ASource: TRealMatrix; const ARect: TRect;
  var ATarget: TRealMatrix; const ATargetTopLeft: TPoint); overload;
procedure MatMove(const ASource: TRealMatrix; var ATarget: TRealMatrix;
  const ATargetTopLeft: TPoint); overload; inline;

/// <summary>A quick but unsafe procedure to copy data from a column in a matrix
///  to a vector.</summary>
/// <param name="ASource">The matrix to copy data from.</param>
/// <param name="AColumn">The column of the matrix to copy data from.</param>
/// <param name="AFrom">The row index of the first element in the column to
///  copy.</param>
/// <param name="ATo">The row index of the last element in the column to
///  copy.</param>
/// <param name="ATarget">The vector to copy data into.</param>
/// <param name="ATargetFrom">The index of the first component of the vector
///  to overwrite.</param>
/// <remarks>The specified elements in the source matrix MUST exist, and the
///  target vector MUST be large enough to contain all data.</remarks>
procedure MatMoveColToVect(const ASource: TRealMatrix; const AColumn: Integer;
  const AFrom, ATo: Integer; var ATarget: TRealVector;
  const ATargetFrom: Integer = 0); overload;

/// <summary>A quick but unsafe procedure to copy data from a row in a matrix
///  to a vector.</summary>
/// <param name="ASource">The matrix to copy data from.</param>
/// <param name="ARow">The row of the matrix to copy data from.</param>
/// <param name="AFrom">The column index of the first element in the row to
///  copy.</param>
/// <param name="ATo">The column index of the last element in the row to
///  copy.</param>
/// <param name="ATarget">The vector to copy data into.</param>
/// <param name="ATargetFrom">The index of the first component of the vector
///  to overwrite.</param>
/// <remarks>The specified elements in the source matrix MUST exist, and the
///  target vector MUST be large enough to contain all data.</remarks>
procedure MatMoveRowToVect(const ASource: TRealMatrix; const ARow: Integer;
  const AFrom, ATo: Integer; var ATarget: TRealVector;
  const ATargetFrom: Integer = 0); overload; inline;

/// <summary>A quick but unsafe procedure to perform an inplace multiplication
///  of a submatrix with a square matrix from the left.</summary>
/// <param name="ATarget">The matrix to modify.</param>
/// <param name="ARect">A rectangle that identifies the submatrix to multiply.
///  Both the upper-left and the bottom-right corners belong to the submatrix.
///  The submatrix has format n × m. This parameter MUST specify a valid
///  submatrix.</param>
/// <param name="AFactor">The matrix to multiply the submatrix by, from the left.
///  This MUST be a matrix of size n × n.</param>
procedure MatMulBlockInplaceL(var ATarget: TRealMatrix; const ARect: TRect;
  const AFactor: TRealMatrix); overload;

/// <summary>A quick but unsafe procedure to perform an inplace multiplication
///  of a square submatrix with a square matrix from the left.</summary>
/// <param name="ATarget">The matrix to modify.</param>
/// <param name="APoint">The index of the upper-left element of the submatrix.</param>
/// <param name="AFactor">The matrix to multiply the submatrix by, from the left.
///  This MUST be a matrix of size n × n.</param>
/// <remarks>The implied n × n submatrix MUST be valid.</remarks>
procedure MatMulBlockInplaceL(var ATarget: TRealMatrix; const ATopLeft: TPoint;
  const AFactor: TRealMatrix); overload; inline;

/// <summary>
///  <para>Performs the operation</para>
///  <para><c>ATarget := ATarget * DirectSum(IdentityMatrix(k), AFactor)</c></para>
///  <para>where <c>k = n - m</c>, <c>n</c> is the size of the square matrix
///   <c>ATarget</c>, and <c>m <= n</c> is the size of the square matrix
///   <c>AFactor</c>.</para>
/// </summary>
/// <param name="ATarget">An n×n matrix. This MUST be square.</param>
/// <param name="AFactor">An m×m matrix which MUST be square and where m
///  MUST be <= n.</param>
procedure MatMulBottomRight(var ATarget: TRealMatrix; const AFactor: TRealMatrix); overload;

/// <summary>A quick but unsafe procedure to fill a submatrix with a given
///  real number.</summary>
/// <param name="ATarget">The matrix to modify.</param>
/// <param name="ARect">A rectangle describing the submatrix to fill; both
///  the top-left and the bottom-right elements of the rectangle belong to the
///  submatrix.</param>
/// <param name="Value">The real number to fill the submatrix with.</param>
/// <remarks>The specified submatrix MUST belong to the matrix.</remarks>
procedure MatBlockFill(var ATarget: TRealMatrix; const ARect: TRect;
  const Value: TASR); overload;


type
  TComplexRowOperationRecord = record
    RowOperationType: TRowOperationType;
    Row1, Row2: Integer;
    Factor: TASC;
  end;
  TComplexRowOpSequence = array of TComplexRowOperationRecord;

  /// <summary>The AlgoSim complex matrix type.</summary>
  TComplexMatrix = record
  strict private
    const
      InitialRowOpSeqSize = 16; // strategy: then double
    var
      FSize: TMatrixSize;
      FElements: TASCArray;
      FRowOpSeq: TComplexRowOpSequence;
      FRowOpCount: Integer;
      FRowOpFactor: TASC;
      _FCollectRowOpData: Boolean; // never set directly -- use BeginCollectRowOpData and EndCollectRowOpData

    procedure SetSize(const Value: TMatrixSize);
    function GetElement(Row, Col: Integer): TASC; inline;
    procedure SetElement(Row, Col: Integer; const Value: TASC); inline;
    function GetRow(ARow: Integer): TComplexVector;
    function GetCol(ACol: Integer): TComplexVector;
    procedure _DoSetRow(ARowIndex: Integer; const ARow: TComplexVector);
    procedure _DoSetCol(AColIndex: Integer; const ACol: TComplexVector);
    function GetFirstCol: TComplexVector; inline;
    procedure SetFirstCol(const ACol: TComplexVector); inline;
    function GetLastCol: TComplexVector; inline;
    procedure SetLastCol(const ACol: TComplexVector); inline;
    function GetMainDiagonal: TComplexVector;
    procedure SetMainDiagonal(const ADiagonal: TComplexVector);
    function GetSuperDiagonal: TComplexVector;
    procedure SetSuperDiagonal(const ADiagonal: TComplexVector);
    function GetSubDiagonal: TComplexVector;
    procedure SetSubDiagonal(const ADiagonal: TComplexVector);
    function GetAntiDiagonal: TComplexVector;
    procedure SetAntiDiagonal(const ADiagonal: TComplexVector);
    procedure Alloc(ARows, ACols: Integer); overload;
    procedure Alloc(ASize: Integer); overload;
    procedure Alloc(const ASize: TMatrixSize); overload;
    function GetRowData(AIndex: Integer): PASC; inline;
    function SafeGetRowData(AIndex: Integer): PASC;
    function GetMemorySize: Int64;

    /// <summary>Clears any existing row op data, initializes the row op buffers
    /// and sets the collect row op data flag to true, so that row op data will
    /// be collected after this call.</summary>
    procedure BeginCollectRowOpData;

    /// <summary>Clears any existing row op data and sets the collect row op data
    ///  flag to false.</summary>
//    procedure EndCollectRowOpData;

    /// <summary>Adds a row operation record to the buffer.</summary>
    /// <remarks>Warning! This method MUST NOT be called if FCollectRowOpData
    ///  is set to false. Doing so will result in undefined behaviour.</remarks>
    procedure AddRowOpRecord(AType: TRowOperationType; ARow1, ARow2: Integer;
      AFactor: TASC);

    procedure GetHouseholderMap(const AVect: TComplexVector;
      out tau, gamma: TASC; out u: TComplexVector);

    /// <summary>Returns the two complex eigenvalues of the second leading
    ///  principal submatrix of the matrix.</summary>
    /// <remarks>The matrix MUST has at least two columns and it MUST have
    ///  at least two rows.</remarks>
    function Eigenvalues2x2: TComplexVector;

  private
    /// <summary>Creates a new complex matrix record but does not allocate data
    ///  for the matrix entries. The <c>Data</c> property is set to <c>nil</c>.
    ///  </summary>
//    constructor CreateWithoutAllocation(const ASize: TMatrixSize);

    /// <summary>Returns true iff the matrix is an empty matrix, that is, if
    ///  it has exactly zero elements.</summary>
    function IsEmpty: Boolean; inline;

    /// <summary>Performs a fast LU decomposition of the matrix, which has to be
    ///  an n×n square.</summary>
    /// <param name="A">An n×n matrix that receives the elements of L and U.
    ///  The upper triangular part, including the main diagonal, receives the
    ///  elments of U, and the lower triangular part, excluding the diagonal,
    ///  receives the elements of L that are below the main diagonal. The main
    ///  diagonal elements of L are all equal to 1, so A contains all
    ///  information about L and U.</param>
    /// <param name="P">An n-dimensional array of integers that contain all
    ///  information about the row exchanges made during the LU decomposition.
    ///  If the kth element of the array is m, then at the kth step, rows k and
    ///  m (>= k) were exchanged. If m = k, no row exchange was made at this
    ///  step. If m = -1, no row exchange was made at this step, and, in
    ///  addition, it was found that the matrix was singular at this step.
    ///  </param>
    /// <remarks>This method is as fast as possible. The public method
    ///  LU uses this method to construct the actual matrixes L, U, and P in
    ///  the LU decomposition Self = P.Transpose * L * U.</remarks>
    /// <exception cref="EMathException">Raised if the matrix isn't square.
    ///  </exception>
    procedure DoQuickLU(out A: TComplexMatrix; out P: TIndexArray);

    procedure RequireNonEmpty; inline;

  public

    // ***
    // Constructors
    // ***

    /// <summary>Allocates memory for a new complex matrix of a given size.
    ///  Equivalently, it creates a new complex matrix of a given size with
    ///  elements with undefined initial values.</summary>
    /// <remarks>Creating an uninitialized matrix of a given size is faster
    ///  compared to creating an initialized matrix of the same size.</remarks>
    constructor CreateUninitialized(const ASize: TMatrixSize);

    /// <summary>Copy constructor for <c>TComplexMatrix</c>.</summary>
    constructor Create(const AMatrix: TComplexMatrix); overload;

    /// <summary>Creates a new complex matrix from an array of complex-number
    ///  arrays. Each complex-number array will form a row in the matrix.</summary>
    /// <param name="Elements">An open array of complex-number arrays that will
    ///  be used to create the matrix.</param>
    /// <remarks>The complex-number arrays have to have the same length; this
    ///  common length becomes the number of columns of the matrix.</remarks>
    /// <see cref="CreateFromRows" />
    /// <see cref="CreateFromColumns" />
    constructor Create(const Elements: array of TASCArray); overload;

    /// <summary>Creates a new complex matrix from a single array of complex
    ///  numbers and a given matrix format; the complex numbers will populate
    ///  the matrix top to bottom and left to right. The complex number with
    ///  index i + 1 will be to the right of the element with index i unless the
    ///  latter is the right-most element of a row, in which case element i + 1
    ///  will become the first element of the next row.</summary>
    /// <param name="Elements">An array of complex numbers.</param>
    /// <param name="Cols">The number of columns in the matrix.</param>
    /// <remarks>The number of rows in the matrix will be the length of
    ///  <c>Elements</c> divided by <c>Cols</c>, which has to be an integer. The
    ///  default value of <c>Cols</c> is 1, which will create a single-column
    ///  matrix (a column vector) with the length of <c>Elements</c>.</remarks>
    constructor Create(const Elements: array of TASC; Cols: Integer = 1); overload;

    /// <summary>Creates a new complex matrix with a given format and fills it
    ///  with a given complex number.</summary>
    /// <param name="ASize">The format of the matrix.</param>
    /// <param name="AVal">The complex number to fill the matrix with.</param>
    /// <remarks>The default value of <c>AVal</c> is zero, which will create the
    ///  zero matrix of the given size.</remarks>
    constructor Create(const ASize: TMatrixSize; const AVal: TASC); overload;

    /// <summary>Creates a new complex matrix from a sequence of complex vectors,
    ///  which will form the rows of the matrix.</summary>
    /// <param name="Rows">An open array of complex vectors; each complex vector will
    ///  form a row in the matrix. The number of complex vectors will become the
    ///  number of rows in the matrix.</param>
    /// <remarks>The vectors need to have the same length, which will become the
    ///  number of columns of the matrix.</remarks>
    constructor CreateFromRows(const Rows: array of TComplexVector);

    /// <summary>Creates a new complex matrix from a sequence of complex vectors,
    ///  which will form the columns of the matrix.</summary>
    /// <param name="Columns">An open array of complex vectors; each complex vector will
    ///  form a column in the matrix. The number of complex vectors will become the
    ///  number of columns in the matrix.</param>
    /// <remarks>The vectors need to have the same length, which will become the
    ///  number of rows of the matrix.</remarks>
    constructor CreateFromColumns(const Columns: array of TComplexVector);

    /// <summary>Creates a new complex matrix A from two complex vectors u and v;
    ///  the matrix is the outer product of the vectors, that is, A_ij = u_i * v_j*.
    ///  </summary>
    /// <param name="u">The first complex vector.</param>
    /// <param name="v">The second complex vector.</param>
    /// <remarks>The vectors need not be of the same dimension.</remarks>
    constructor Create(const u, v: TComplexVector); overload;

    /// <summary>Creates a new complex matrix using given format and a
    ///  complex-valued function of valid matrix indices.</summary>
    /// <param name="ASize">The format of the matrix.</param>
    /// <param name="AFunction">A reference to a complex-valued function of
    ///  matrix indices (integers). This function is used to populate the matrix.
    ///  The element (i, j) in the matrix is the value AFunction(i, j). Here,
    ///  row and column indices are 1-based.</param>
    constructor Create(const ASize: TMatrixSize;
      AFunction: TMatrixIndexFunction<TASC>); overload;

    /// <summary>Creates a new diagonal complex matrix using a given array of
    ///  complex numbers.</summary>
    /// <param name="Elements">An open array of complex numbers that will be
    ///  used as the diagonal entries of the matrix.</param>
    constructor CreateDiagonal(const Elements: array of TASC); overload;

    /// <summary>Creates a new diagonal complex matrix using a given complex
    ///  vector.</summary>
    /// <param name="Elements">A complex vector that will be used to populate
    ///  the diagonal of the matrix.</param>
    constructor CreateDiagonal(const Elements: TComplexVector); overload;

    /// <summary>Creates a new diagonal complex matrix of a given size and a
    ///  (fixed) given value on the diagonal.</summary>
    /// <param name="ASize">The format of the matrix.</param>
    /// <param name="AVal">The value on the main diagonal.</param>
    constructor CreateDiagonal(ASize: Integer; AVal: TASC); overload;

    /// <summary>Creates a new complex matrix using pre-defined blocks.</summary>
    /// <param name="Blocks">An open array of the blocks of the matrix in row-
    ///  major order.</param>
    /// <param name="Cols">The number of blocks per row of the block matrix;
    ///  this value must be at least 1.</param>
    /// <remarks>Each block must contain at least a single element. In each row
    ///  of the block matrix, the number of rows in each block must be the same.
    ///  In each column of the block matrix, the number of columns in each block
    ///  must be the same. If the number of elements of <c>Blocks</c> is not
    ///  divisible by <c>Cols</c>, it will be padded with zero matrices until
    ///  the last row is filled.</remarks>
    /// <exception cref="EMathException">Raised if any of the constraints
    ///  specified above are violated.</exception>
    constructor Create(const Blocks: array of TComplexMatrix; Cols: Integer = 2); overload;

    // ***
    // Properties
    // ***

    /// <summary>The size of the matrix.</summary>
    property Size: TMatrixSize read FSize write SetSize;

    /// <summary>Gives access to the matrix elements using row and column indices.
    ///  </summary>
    /// <remarks>Row and column indices are zero-based.</remarks>
    property Elements[Row, Col: Integer]: TASC read GetElement write SetElement; default;

    /// <summary>Gives access to the rows of the matrix.</summary>
    /// <remarks>Row indices are zero-based.</remarks>
    property Rows[Index: Integer]: TComplexVector read GetRow write _DoSetRow;

    /// <summary>Gives access to the columns of the matrix.</summary>
    /// <remarks>Column indices are zero-based.</remarks>
    property Cols[Index: Integer]: TComplexVector read GetCol write _DoSetCol;

    /// <summary>Gives access to the first column.</summary>
    property FirstColumn: TComplexVector read GetFirstCol write SetFirstCol;

    /// <summary>Gives access to the last column.</summary>
    property LastColumn: TComplexVector read GetLastCol write SetLastCol;

    /// <summary>Gives access to the main diagonal of the matrix.</summary>
    /// <remarks>Diagonal indices are zero-based.</remarks>
    property MainDiagonal: TComplexVector read GetMainDiagonal write SetMainDiagonal;

    /// <summary>Gives access to the superdiagonal of the matrix.</summary>
    /// <remarks>Superdiagonal indices are zero-based.</remarks>
    property SuperDiagonal: TComplexVector read GetSuperDiagonal write SetSuperDiagonal;

    /// <summary>Gives access to the subdiagonal of the matrix.</summary>
    /// <remarks>Subdiagonal indices are zero-based.</remarks>
    property SubDiagonal: TComplexVector read GetSubDiagonal write SetSubDiagonal;

    /// <summary>Gives access to the antidiagonal of the matrix.</summary>
    /// <remarks>Antidiagonal indices are zero-based.</remarks>
    property AntiDiagonal: TComplexVector read GetAntiDiagonal write SetAntiDiagonal;

    /// <summary>Gives access to the underlying data as an array of complex numbers
    ///  in row-major order.</summary>
    /// <remarks>This may be cast to a <c>TComplexVector</c>. Notice that all
    ///  changes to the data will affect the original matrix. The <c>AsVector</c>
    ///  member function instead makes a copy of the data.</remarks>
    /// <see cref="AsVector" />
    property Data: TASCArray read FElements write FElements;

    /// <summary>Returns a pointer to the first element of a specific row.
    ///  The row index MUST be valid.</summary>
    property RowData[Index: Integer]: PASC read GetRowData;

    /// <summary>Returns a pointer to the first element of a specific row.
    ///  The function validates that the row index is valid, and raises an
    ///  exception if it is not.</summary>
    property SafeRowData[Index: Integer]: PASC read SafeGetRowData;

    /// <summary>The total size in bytes of this matrix.</summary>
    property MemorySize: Int64 read GetMemorySize;

    // ***
    // Operators
    // ***

    /// <summary>Creates a single-column matrix from a vector.</summary>
    class operator Implicit(const u: TComplexVector): TComplexMatrix;

    /// <summary>Promotes a real matrix to a complex matrix</summary>
    class operator Implicit(const A: TRealMatrix): TComplexMatrix;

    /// <summary>Treats a single-column matrix as a vector.</summary>
    class operator Explicit(const A: TComplexMatrix): TComplexVector; inline;

    /// <summary>Creates a single-entry matrix from a complex number.</summary>
    class operator Explicit(X: TASC): TComplexMatrix;

    class operator Negative(const A: TComplexMatrix): TComplexMatrix;
    class operator Add(const A, B: TComplexMatrix): TComplexMatrix;
    class operator Add(const A: TComplexMatrix; const X: TASC): TComplexMatrix;
    class operator Subtract(const A, B: TComplexMatrix): TComplexMatrix;
    class operator Subtract(const A: TComplexMatrix; const X: TASC): TComplexMatrix;
    class operator Multiply(const A, B: TComplexMatrix): TComplexMatrix;
    class operator Multiply(const X: TASC; const A: TComplexMatrix): TComplexMatrix;
    class operator Multiply(const A: TComplexMatrix; const X: TASC): TComplexMatrix;
    class operator Divide(const A: TComplexMatrix; const X: TASC): TComplexMatrix;
    class operator Equal(const A, B: TComplexMatrix): Boolean; inline;
    class operator NotEqual(const A, B: TComplexMatrix): Boolean; inline;
    class operator Trunc(const A: TComplexMatrix): TComplexMatrix;
    class operator Round(const A: TComplexMatrix): TComplexMatrix;

    // ***
    // Tests
    // ***

    /// <summary>Returns true iff the matrix consists of a single row.</summary>
    function IsRow: Boolean; inline;

    /// <summary>Returns true iff the matrix consists of a single column.</summary>
    function IsColumn: Boolean; inline;

    /// <summary>Returns true iff the matrix is square.</summary>
    function IsSquare: Boolean; inline;

    /// <summary>Returns true iff the matrix is the N-dimensional identity
    ///  matrix.</summary>
    function IsIdentity(const Epsilon: Extended = 0): Boolean;

    /// <summary>Returns true iff the matrix is the m×n zero matrix (that is, if
    ///  it consists of only zeros).</summary>
    function IsZeroMatrix(const Epsilon: Extended = 0): Boolean;

    /// <summary>Returns true iff all non-zero entries are located on the main
    ///  diagonal.</summary>
    function IsDiagonal(const Epsilon: Extended = 0): Boolean;

    /// <summary>Returns true iff the matrix is square and all non-zero entries
    ///  are located on the antidiagonal.</summary>
    function IsAntiDiagonal(const Epsilon: Extended = 0): Boolean;

    /// <summary>Returns true iff the matrix is the N-dimensional reversal
    ///  matrix.</summary>
    function IsReversal(const Epsilon: Extended = 0): Boolean;

    /// <summary>Returns true iff all non-zero entries are located on or above
    ///  the main diagonal.</summary>
    /// <remarks>The matrix need not be square in order to be upper diagonal.
    ///  </remarks>
    function IsUpperTriangular(const Epsilon: Extended = 0): Boolean;

    /// <summary>Returns true iff all non-zero entries are located on or below
    ///  the main diagonal.</summary>
    /// <remarks>The matrix need not be square in order to be lower diagonal.
    ///  </remarks>
    function IsLowerTriangular(const Epsilon: Extended = 0): Boolean;

    /// <summary>Returns true iff the matrix is upper triangular or lower
    ///  triangular.</summary>
    function IsTriangular(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Returns the column index of the first non-zero element on a
    ///  given row.</summary>
    /// <returns>The column index of the first non-zero element on the given
    ///  row or -1 if the row consists of only zeros.</returns>
    function PivotPos(ARow: Integer; const Epsilon: Extended = 0): Integer;

    /// <summary>Returns whether or not a given row consists of only zeros.
    ///  </summary>
    function IsZeroRow(ARow: Integer; const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Returns whether or not a given row consists of only zeros except
    ///  for the right-most entry on the row.</summary>
    function IsEssentiallyZeroRow(ARow: Integer;
      const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is in row echelon form.</summary>
    function IsRowEchelonForm(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether the matrix is in reduced row echelon form.
    ///  A matrix that is in reduced row echelon form is also in row echelon
    ///  form.</summary>
    function IsReducedRowEchelonForm(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determins whether the matrix is scalar, that is, if it is a
    ///  multiple of the identity matrix.</summary>
    function IsScalar(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether the matrix is symmetric.</summary>
    function IsSymmetric(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is skew-symmetric.</summary>
    function IsSkewSymmetric(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is Hermitian.</summary>
    function IsHermitian(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is skew-Hermitian.</summary>
    function IsSkewHermitian(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is orthogonal.</summary>
    function IsOrthogonal(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is unitary.</summary>
    function IsUnitary(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is normal.</summary>
    function IsNormal(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix consists only of ones and zeros.
    ///  </summary>
    function IsBinary(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether the matrix is a permutation matrix.</summary>
    function IsPermutation(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether the matrix is circulant.</summary>
    /// <remarks>A circulant matrix need not be square.</remarks>
    function IsCirculant(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether the matrix is a Toeplitz matrix.</summary>
    /// <remarks>A Toeplitz matrix need not be square.</remarks>
    function IsToeplitz(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether the matrix is a Hankel matrix.</summary>
    /// <remarks>A Hankel matrix need not be square.</remarks>
    function IsHankel(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether the matrix is upper Hessenberg.</summary>
    /// <remarks>An upper Hessenberg matrix is always square.</remarks>
    function IsUpperHessenberg(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether the matrix is lower Hessenberg.</summary>
    /// <remarks>A lower Hessenberg matrix is always square.</remarks>
    function IsLowerHessenberg(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether the matrix is tridiagonal.</summary>
    /// <remarks>A tridiagonal matrix is always square.</remarks>
    function IsTridiagonal(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is upper bidiagonal.</summary>
    /// <remarks>An upper bidiagonal matrix is always square.</remarks>
    function IsUpperBidiagonal(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is lower bidiagonal.</summary>
    /// <remarks>A lower bidiagonal matrix is always square.</remarks>
    function IsLowerBidiagonal(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is bidiagonal.</summary>
    /// <remarks>A bidiagonal matrix is always square.</remarks>
    function IsBidiagonal(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is centrosymmetric.</summary>
    function IsCentrosymmetric(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is a Vandermonde matrix.</summary>
    /// <remarks>A Vandermonde matrix need not be square.</remarks>
    function IsVandermonde(const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether the matrix commutes with a given matrix.
    ///  </summary>
    function CommutesWith(const A: TComplexMatrix;
      const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is idempotent, that is, if A^2 =
    ///  A.</summary>
    /// <remarks>An idempotent matrix is always square.</remarks>
    function IsIdempotent(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is an involution, that is, if A^2 =
    ///  I.</summary>
    /// <remarks>An involutory matrix is always square.</remarks>
    function IsInvolution(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is positive definite.</summary>
    /// <remarks>A positive definite matrix is always square and Hermitian.
    ///  </remarks>
    function IsPositiveDefinite(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is positive semidefinite.</summary>
    /// <remarks>A positive semidefinite matrix is always square and Hermitian.
    ///  </remarks>
    function IsPositiveSemiDefinite(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is negative definite.</summary>
    /// <remarks>A negative definite matrix is always square and Hermitian.
    ///  </remarks>
    function IsNegativeDefinite(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is negative semidefinite.</summary>
    /// <remarks>A negative semidefinite matrix is always square and Hermitian.
    ///  </remarks>
    function IsNegativeSemiDefinite(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the matrix is indefinite.</summary>
    /// <remarks>An indefinite matrix is always square and Hermitian.</remarks>
    function IsIndefinite(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Determines whether the square matrix is nilpotent.</summary>
    /// <exception cref="EMathException">Raised if the matrix isn't square or if
    ///  the method failed to determine nilpotency.</exception>
    function IsNilpotent(const Epsilon: Extended = 0): Boolean; inline;

    /// <summary>Returns the nilpotency index of the square matrix</summary>
    /// <returns>The nilpotency index if the matrix is nilpotent or -1 otherwise.
    ///  </returns>
    /// <exception cref="EMathException">Raised if the matrix isn't square or if
    ///  the method failed to determine nilpotency.</exception>
    function NilpotencyIndex(const Epsilon: Extended = 0): Integer;

    /// <summary>Returns true iff the matrix is diagonally dominant, that is,
    ///  iff for every row the absolute value of the diagonal entry is greater
    ///  than or equal to the deleted absolute row sum.</summary>
    /// <remarks>Only defined for square matrices.</remarks>
    /// <exception cref="EMathException">Raised if the matrix isn't square.
    ///  </exception>
    function IsDiagonallyDominant: Boolean;

    /// <summary>Returns true iff the matrix is strictly diagonally dominant,
    ///  that is, iff for every row the absolute value of the diagonal entry is
    ///  greater than the deleted absolute row sum.</summary>
    /// <remarks>Only defined for square matrices.</remarks>
    /// <exception cref="EMathException">Raised if the matrix isn't square.
    ///  </exception>
    function IsStrictlyDiagonallyDominant: Boolean;

    // ***
    // Operations and computations
    // ***

    /// <summary>Returns the real part of the matrix.</summary>
    function RealPart: TRealMatrix;

    /// <summary>Returns the imaginary part of the matrix.</summary>
    function ImaginaryPart: TRealMatrix;

    /// <summary>Sets all elements to zero above the main diagonal.</summary>
    procedure MakeLowerTriangular;

    /// <summary>Sets all elements to zero below the main diagonal.</summary>
    procedure MakeUpperTriangular;

    /// <summary>Sets all elements to zero below the main subdiagonal.</summary>
    procedure MakeUpperHessenberg;

    /// <summary>Returns the square of the matrix.</summary>
    function Sqr: TComplexMatrix; inline;

    /// <summary>Returns the transpose of the matrix.</summary>
    function Transpose: TComplexMatrix;

    /// <summary>Returns the Hermitian conjugate (conjugate transpose, adjoint)
    ///  of the matrix.</summary>
    function Adjoint: TComplexMatrix;

    /// <summary>Returns the Hermitian square of the matrix.</summary>
    function HermitianSquare: TComplexMatrix; inline;

    /// <summary>Returns the modulus of the matrix.</summary>
    /// <remarks>The modulus is the unique positive-semidefinite square root of
    ///  the Hermitian square.</remarks>
    function Modulus: TComplexMatrix; inline;

    /// <summary>Returns the determinant of the matrix.</summary>
    function Determinant: TASC;

    /// <summary>Returns the trace of the matrix.</summary>
    function Trace: TASC;

    /// <summary>Returns the inverse of the matrix, if it exists.</summary>
    /// <exception cref="EMathException">Thrown if the matrix doesn't have an
    ///  inverse. This happens if the matrix isn't square or if its determinant
    ///  is zero (iff it doesn't have full rank).</exception>
    /// <remarks>The current matrix is not modified by the method.</remarks>
    /// <see cref="TryInvert" />
    function Inverse: TComplexMatrix;

    /// <summary>Attempts to invert the matrix, which has to be square.</summary>
    /// <param name="AInverse">Receives the inverse of the matrix, if it can
    ///  be computed.</param>
    /// <returns>True iff the matrix can be inverted, that is, if and only if
    ///  it is non-singular.</returns>
    /// <exception cref="EMathException">Raised if the matrix isn't square.
    ///  </exception>
    /// <see cref="Inverse" />
    function TryInvert(out AInverse: TComplexMatrix): Boolean;

    /// <summary>Returns the Moore-Penrose pseudoinverse of the matrix.</summary>
//    function Pseudoinverse: TComplexMatrix; experimental;

    /// <summary>Returns the rank of the matrix.</summary>
    function Rank: Integer; inline;

    /// <summary>Returns the nullity of the matrix.</summary>
    function Nullity: Integer; inline;

    /// <summary>Returns the condition number of the matrix using a specified
    ///  matrix norm.</summary>
    /// <exception cref="EMathException">Raised if the matrix isn't square and
    ///  invertible.</exception>
    function ConditionNumber(p: Integer = 2): TASR;

    /// <summary>Determines whether the matrix, which has to be square, is
    ///  singular.</summary>
    /// <returns>True iff the matrix is singular.</returns>
    /// <exception cref="EMathException">Thrown if the matrix isn't square.
    ///  </exception>
    function IsSingular: Boolean;

    /// <summary>Returns the Frobenius norm of the matrix, that is, the square
    ///  root of the sum of the squared moduli of all its elements.</summary>
    /// <remarks>This norm is submultiplicative.</remarks>
    function Norm: TASR; inline;

    /// <summary>Returns the square of the Frobenius norm of the matrix.</summary>
    function NormSqr: TASR; inline;

    /// <summary>Returns the (vector) p-norm of the matrix.</summary>
    function pNorm(const p: TASR): TASR; inline;

    /// <summary>Returns the max norm of the matrix, that is, the largest
    ///  modulus of its elements.</summary>
    ///  <remarks>This norm is NOT submultiplicative.</remarks>
    function MaxNorm: TASR; inline;

    /// <summary>Returns the sum norm of the matrix, that is, the sum of all
    ///  moduli of the entries.</summary>
    /// <remarks>This norm is submultiplicative.</remarks>
    function SumNorm: TASR; inline;

    /// <summary>Returns the k-norm of the matrix.</summary>
    function kNorm(const k: Integer): TASR; inline;

    /// <summary>Returns the maximum column sum norm of the matrix.</summary>
    /// <remarks>This norm is submultiplicative.</remarks>
    function MaxColSumNorm: TASR;

    /// <summary>Returns the maximum row sum norm of the matrix.</summary>
    /// <remarks>This norm is submultiplicative.</remarks>
    function MaxRowSumNorm: TASR;

    /// <summary>Returns the spectral norm of the matrix, that is, the largest
    ///  singular value.</summary>
    /// <remarks>This norm is submultiplicative.</remarks>
    function SpectralNorm: TASR; inline;

    /// <summary>Returns a deleted absolute row sum, that is, the sum of all
    ///  absolute-value entries on a given row except the row's diagonal entry
    ///  (if it has a diagonal entry).</summary>
    function DeletedAbsoluteRowSum(ARow: Integer): TASR;

    /// <summary>Swaps two rows in a matrix (in place).</summary>
    /// <returns>A reference to the original matrix.</returns>
    function RowSwap(ARow1, ARow2: Integer): TComplexMatrix;

    /// <summary>Multiplies a single row in a matrix with a constant complex
    ///  number (in place).</summary>
    /// <returns>A reference to the original matrix.</returns>
    function RowScale(ARow: Integer; AFactor: TASC): TComplexMatrix;

    /// <summary>Adds a multiple of one row to a second row in a matrix (in place).
    ///  </summary>
    /// <returns>A reference to the original matrix.</returns>
    function RowAddMul(ATarget, ASource: Integer; AFactor: TASC;
      ADefuzz: Boolean = False; AFirstCol: Integer = 0): TComplexMatrix;

    /// <summary>Performs a given row operation to the matrix. The row operation
    ///  is given by a TRowOperationRecord.</summary>
    /// <returns>A reference to the original matrix.</returns>
    function RowOp(const ARowOp: TComplexRowOperationRecord): TComplexMatrix;

    /// <summary>Uses row operations to find a row echelon form of the matrix.
    ///  </summary>
    /// <param name="CollectRowOps">If set to true, the row operations performed
    ///  will be saved to the row op buffer.</param>
    /// <returns>Returns a row echelon form of the matrix.</returns>
    /// <remarks>The original matrix is not altered by this method; all row
    ///  operations are performed on a copy.</remarks>
    function RowEchelonForm(CollectRowOps: Boolean = False): TComplexMatrix;

    /// <summary>Uses row operations to find the reduced row echelon form of the
    ///  matrix.</summary>
    /// <param name="CollectRowOps">If set to true, the row operations performed
    ///  will be saved to the row op buffer.</param>
    /// <returns>Returns the reduced row echelon form of the matrix.</returns>
    /// <remarks>The original matrix is not altered by this method; all row
    ///  operations are performed on a copy.</remarks>
    function ReducedRowEchelonForm(CollectRowOps: Boolean = False): TComplexMatrix;

    /// <summary>Returns the number of zero rows in the matrix.</summary>
    function NumZeroRows(const AEpsilon: TASR = 0): Integer;

    /// <summary>Returns the number of zero rows at the bottom of the matrix.
    ///  </summary>
    function NumTrailingZeroRows(const AEpsilon: TASR = 0): Integer;

    /// <summary>Performs the Gram-Schmidt orthonormalization procedure on the
    ///  columns of the matrix; the result is returned.</summary>
    /// <remarks>The current matrix is not modified by the method.</remarks>
    function GramSchmidt: TComplexMatrix;

    procedure InplaceGramSchmidt(FirstCol, LastCol: Integer);

    /// <summary>Returns the matrix with zero or more columns removed so that
    ///  the remaining columns form a basis for the column space (range) of the
    ///  matrix.</summary>
    function ColumnSpaceBasis: TComplexMatrix;

    function ColumnSpaceProjection(const AVector: TComplexVector): TComplexVector;

    /// <summary>Returns the Euclidean distance between a vector and the column
    ///  space of the matrix.</summary>
    function DistanceFromColumnSpace(const AVector: TComplexVector): TASR;

    /// <summary>Computes and returns an upper Hessenberg matrix that is similar
    ///  to the original matrix, which must be square.</summary>
    /// <param name="A2x2Bulge">If true, the original matrix MUST be a PROPER
    ///  upper Hessenberg matrix except for a 2×2 bulge at the upper-left
    ///  position. In this case, a different algorithm suitable for this
    ///  particular case might be used, which is faster than the general-case
    ///  algorithm.</param>
    /// <remarks>If the original matrix is Hermitian, the result is tridiagonal.
    ///  </remarks>
    /// <exception cref="EMathException">Raised if the matrix isn't square.
    ///  </exception>
    function SimilarHessenberg(A2x2Bulge: Boolean = False): TComplexMatrix;

    /// <summary>Returns the array of eigenvalues of the matrix.</summary>
    /// <returns>A complex vector of the n eigenvalues.</returns>
    /// <exception cref="EMathException">Raised if the eigenvalues couldn't be
    ///  computed, for any reason.</exception>
    function UnsortedEigenvalues: TComplexVector;

    function eigenvalues: TComplexVector;

    /// <summary>An alias for <c>eigenvalues</c>.</summary>
    function spectrum: TComplexVector; inline; // alias

    /// <summary>Computes the eigenvalues and eigenvectors of the matrix.
    ///  </summary>
    /// <param name="AEigenvalues">Receives the eigenvalues.</param>
    /// <param name="AEigenvectors">Receives a complex n×n matrix, the columns
    ///  of which are linearly independent eigenvectors of the matrix in the
    ///  same order as the eigenvalues.</param>
    /// <param name="ASkipVerify">If false (the default), the method verifies
    ///  that the obtained vectors really are linearly independent eigenvectors
    ///  of the matrix, in the same order as the eigenvalues. If true, this
    ///  verification is skipped. In any case, the eigenvalues are verified.
    ///  </param>
    /// <returns>True iff the eigenvalues and eigenvectors were successfully
    ///  computed and all checks complete successfully.</returns>
    /// <remarks>Currently only implemented for Hermitian matrices.</remarks>
    /// <exception cref="EMathException">Raised if the matrix isn't square
    ///  and Hermitian.</exception>
    function eigenvectors(out AEigenvalues: TComplexVector;
      out AEigenvectors: TComplexMatrix; ASkipVerify: Boolean = False): Boolean;

    /// <summary>Returns true iff the given vector is an eigenvector of the
    ///  square matrix.</summary>
    /// <exception cref="EMathException">Raised if the matrix isn't square or
    ///  if the given vector is of a different dimension.</exception>
    function IsEigenvector(const u: TComplexVector;
      const Epsilon: Extended = 0): Boolean;

    /// <summary>Returns the associated eigenvalue of a given eigenvector.
    ///  </summary>
    /// <exception cref="EMathException">Raised if the given vector isn't an
    ///  eigenvector of the matrix. In particular, this happens if the matrix
    ///  isn't square or if the vector is the zero vector of its dimension or
    //// of a different dimension compared to the matrix.</exception>
    function EigenvalueOf(const u: TComplexVector;
      const Epsilon: Extended = 0): TASC;

    /// <summary>Tries to find the associated eigenvalue of a given vector and
    ///  returns whether the given vector was an eigenvector or not.</summary>
    /// <param name="u">The given vector that might or might not be an eigenvector
    ///  of the matrix.</param>
    /// <param name="AEigenvalue">Receives the associated eigenvalue, if the
    ///  given vector turned out to be an eigenvector.</param>
    /// <returns>True iff the given vector is an eigenvector of the matrix.
    ///  </returns>
    /// <exception cref="EMathException">Raised if the matrix isn't square
    ///  or if the dimension of the given vector doesn't match the size of the
    ///  matrix.</exception>
    function TryEigenvalueOf(const u: TComplexVector; out AEigenvalue: TASC;
      const Epsilon: Extended = 0): Boolean;

    /// <summary>Determines whether (lambda, u) is an eigenpair of the matrix.
    ///  </summary>
    function IsEigenpair(const lambda: TASC; const u: TComplexVector;
      const Epsilon: Extended = 0): Boolean;

    /// <summary>Computes an eigenvector associated with a given eigenvalue.
    ///  </summary>
    /// <param name="lambda">The eigenvalue to find an associated eigenvalue for.
    ///  </param>
    /// <returns>A normalized eigenvector associated with the given eigenvalue.
    ///  </returns>
    /// <exception cref="EMathException">Raised if <c>lambda</c> isn't an
    ///  eigenvalue of the matrix. In particular, this happens if the matrix
    ///  isn't square. Also raised if the algorithm fails to compute an
    ///  eigenvector, for any reason.</exception>
    function EigenvectorOf(const lambda: TASC): TComplexVector;

    /// <summary>Returns the spectral radius of the matrix, that is, the largest
    ///  absolute value of the eigenvalues.</summary>
    /// <remarks>The current implementation only works if all eigenvalues are
    ///  real; otherwise, an exception is raised.</remarks>
    function SpectralRadius: TASR; inline;

    /// <summary>Returns the array of singular values of the matrix.</summary>
    /// <remarks><para>The singular values are the eigenvalues of <c>sqrt(A* A)</c>,
    ///  or, equivalently, the square roots of the eigenvalues of the Hermitian
    ///  square <c>A* A</c>.</para>
    ///  <para>The singular values are listed in decreasing order.</para></remarks>
    function SingularValues: TRealVector;

    /// <summary>Returns a copy of the matrix with each element replaced with
    ///  its modulus.</summary>
    function Abs: TRealMatrix;

    /// <summary>Replaces all elements that are extremely close to zero with
    ///  zero.</summary>
    /// <returns>A reference to the matrix.</returns>
    /// <remarks>The matrix is altered by this method; the result only points
    ///  to the original matrix that has been modified.</remarks>
    function Defuzz(const Eps: Double = 1E-8): TComplexMatrix;

    /// <summary>Creates a new matrix that is identical to this matrix.</summary>
    function Clone: TComplexMatrix; // empty matrix aware

    /// <summary>Returns the elements of the matrix as a complex vector. The
    ///  elements are obtained from the matrix in column-major order. In
    ///  particular, this works well if the matrix is either a single row or a
    ///  single column.</summary>
    /// <see cref="AsVector" />
    function Vectorization: TComplexVector; inline;

    /// <summary>Returns the elements of the matrix as a complex vector. The
    ///  elements are obtained from the matrix in row-major order. In particular,
    ///  this works well if the matrix is either a single row or a single column.
    ///  </summary>
    /// <see cref="Vectorization" />
    /// <see cref="Data" />
    function AsVector: TComplexVector; inline;

    /// <summary>Augments the matrix with a new matrix.</summary>
    /// <param name="A">The complex matrix to augment the current matrix with.
    ///  This matrix must have the same number of rows as the current matrix.
    ///  </param>
    /// <returns>A complex matrix with A augmented to the right of the current
    ///  matrix.</return>
    /// <remarks>The current matrix is not modified by the method. A vector
    ///  may be used as the argument, since it will be automatically promoted to
    ///  the corresponding single-column matrix.</remarks>
    /// <see cref="AddRow" />
    function Augment(const A: TComplexMatrix): TComplexMatrix; overload; // empty matrix aware

    /// <summary>Augments the matrix with a zero column.</summary>
    /// <returns>A complex matrix with a zero column augmented to the right of the
    ///  current matrix.</return>
    /// <remarks>The current matrix is not modified by the method.</remarks>
    function Augment: TComplexMatrix; overload; inline;

    /// <summary>Replaces a specific row with a new set of values.</summary>
    procedure SetRow(ARowIndex: Integer; const ARow: array of TASC);

    /// <summary>Replaces a specific column with a new set of values.</summary>
    procedure SetCol(AColIndex: Integer; const ACol: array of TASC);

    /// <summary>Returns the (m-1)×(n-1) submatrix obtained by removing a single
    ///  row and a single column from the matrix.</summary>
    /// <remarks>The current matrix is not modified by the method.</remarks>
    function Submatrix(ARowToRemove: Integer = 0;
      AColToRemove: Integer = 0; AAllowEmpty: Boolean = False): TComplexMatrix; overload; // empty matrix aware

    /// <summary>Returns a submatrix of the current matrix using the specified
    ///  rows and columns.</summary>
    /// <remarks>The current matrix is not modified by the method.</remarks>
    function Submatrix(const ARows: array of Integer;
      const ACols: array of Integer): TComplexMatrix; overload;

    /// <summary>Returns a principal submatrix of the current matrix using the
    ///  specified rows and columns.</summary>
    /// <remarks>The current matrix is not modified by the method.</remarks>
    function Submatrix(const ARows: array of Integer): TComplexMatrix; overload;

    /// <summary>Returns a leading principal submatrix of the matrix.</summary>
    function LeadingPrincipalSubmatrix(const ASize: Integer): TComplexMatrix;

    /// <summary>Returns the submatrix obtained by removing the last column.
    ///  </summary>
    /// <remarks>The current matrix is not modified by the method.</remarks>
    function Lessened: TComplexMatrix;

    /// <summary>Returns the determinant of the submatrix obtained by removing
    ///  one specific row and one specific column.</summary>
    function Minor(ARow, ACol: Integer): TASC; inline;

    /// <summary>Returns (-1)^(ARow + ACol) times the corresponding minor.
    ///  </summary>
    function Cofactor(ARow, ACol: Integer): TASC; inline;

    /// <summary>Returns the cofactor matrix of the matrix.</summary>
    function CofactorMatrix: TComplexMatrix;

    /// <summary>Returns the adjugate matrix of the matrix, that is, the
    ///  transpose of the cofactor matrix.</summary>
    function AdjugateMatrix: TComplexMatrix; inline;

    /// <summary>Returns a copy of the matrix with each element replaced by
    ///  the result of a complex-valued function applied to it.</summary>
    /// <remarks>The current matrix is not modified by the method.</remarks>
    function Apply(AFunction: TComplexFunctionRef): TComplexMatrix;

    /// <summary>Replaces each entry of the matrix satisfying the given predicate
    ///  with a given value.</summary>
    /// <param name="APredicate">A predicate for complex numbers. Each matrix entry
    ///  satisfying this predicate will be replaced with <c>ANewValue</c>.</param>
    /// <param name="ANewValue">The value to replace entries with.</param>
    /// <returns>A copy of the current matrix but with all entries satisfying
    ///  <c>APredicate</c> replaced with <c>ANewValue</c>.</returns>
    /// <remarks>The current matrix is not modified by this method.</remarks>
    function Replace(APredicate: TPredicate<TASC>;
      const ANewValue: TASC): TComplexMatrix; overload;

    /// <summary>Replaces each entry with a specified value with a new value.
    ///  </summary>
    /// <param name="AOldValue">The value to search for in the original matrix.
    ///  </param>
    /// <param name="ANewValue">The value to replace with.</param>
    /// <returns>A copy of the current matrix but with each entry originally
    ///  eaual to <c>AOldValue</c> replaced with <c>ANewValue</c>.</returns>
    /// <remarks>The current matrix is not modified by this method.</remarks>
    function Replace(const AOldValue, ANewValue: TASC;
      const Epsilon: Extended = 0): TComplexMatrix; overload;

    /// <summary>Sets each entry of the matrix to the same, new, value.</summary>
    /// <param name="ANewValue">The new value to set each entry to.</param>
    /// <returns>A matrix of the same size as the original matrix but with each
    ///  entry equal to <c>ANewValue</c>.</returns>
    /// <remarks>The current matrix is not modified by this method.</remarks>
    function Replace(const ANewValue: TASC): TComplexMatrix; overload;

    /// <summary>Returns either a single-line textual representation of the
    /// matrix of the form ((M00, M01, ...), (M10, M11, ...), ...) or a multi-
    /// line tabular representation.</summary>
    function str(const AOptions: TFormatOptions): string; // mainly for debugging

    /// <summary>Adds a row to the matrix.</summary>
    /// <remarks>This is more of a computing-related function than a mathematical
    ///  operation. Notice that it does suffer from the
    ///  <c>SetLength(X, Length(X) + 1)</c> problem.</remarks>
    /// <see cref="Augment" />
    procedure AddRow(const ARow: array of TASC);

    /// <summary>Sorts the elemenets of the matrix.</summary>
    /// <remarks>This operation sorts the elements of the original matrix,
    ///  and returns a reference to it.</remarks>
    /// <returns>A reference to the original matrix, which has been sorted.
    ///  </returns>
    function Sort(AComparer: IComparer<TASC>): TComplexMatrix;
    function SafeSort(AComparer: IComparer<TASC>): TComplexMatrix;

    /// <summary>Shuffles the elemenets of the matrix.</summary>
    /// <remarks>This operation shuffles the elements of the original matrix,
    ///  and returns a reference to it.</remarks>
    /// <returns>A reference to the original matrix, which has been shuffled.
    ///  </returns>
    function Shuffle: TComplexMatrix;

    /// <summary>Reverses the order of the elements in the matrix (in the
    /// row-major sense).</summary>
    /// <remarks>This operation reverses the elements of the original matrix,
    ///  and returns a reference to it.</remarks>
    /// <returns>A reference to the original matrix, which has been reversed.
    ///  </returns>
    function Reverse: TComplexMatrix;

    // ***
    // Decompositions
    // ***

    /// <summary>Produces a LU decomposition of the matrix, which has to be square,
    ///  that is, finds a permutation matrix P, a unit lower triangular matrix L,
    ///  and an upper triangular matrix U such that Self = P.Adjoint * L * U.
    ///  </summary>
    /// <param name="P">Receives the permutation matrix P.</param>
    /// <param name="L">Receives the unit lower triangular matrix L.</param>
    /// <param name="U">Receives the upper triangular matrix U.</param>
    /// <exception cref="EMathException">Raised if the matrix isn't square.
    ///  </exception>
    procedure LU(out P, L, U: TComplexMatrix);

    /// <summary>Computes the Cholesky decomposition of the square matrix, if
    ///  possible.</summary>
    /// <param name="R">Receives the upper triangular Cholesky factor R such
    ///  that Self = R.Adjoint * R.</param>
    /// <returns>True iff the decomposition was successfully computed; this
    ///  happens precisely when the matrix is positive definite.</returns>
    /// <exception cref="EMathException">Raised if the matrix isn't square.
    ///  </exception>
    function Cholesky(out R: TComplexMatrix): Boolean;

    /// <summary>Produces a unitary matrix Q and an upper triangular matrix
    ///  R such that Self = Q * R.</summary>
    /// <remarks>QR decomposition is only implemented for square and tall matrices.
    ///  </remarks>
    /// <exception cref="EMathException">Raised if the matrix is wide, that is,
    ///  if <c>Size.Cols > Size.Rows</c>.</exception>
    procedure QR(out Q, R: TComplexMatrix);

    /// <summary>Finds an upper Hessenberg matrix A and an orthogonal matrix
    ///  U such that Self = U A U.Transpose.</summary>
    procedure Hessenberg(out A, U: TComplexMatrix);

  end;

/// <summary>Computes and returns the Nth power of the square matrix A.</summary>
/// <remarks>The zeroth power is the identity matrix of the same size as A.
///  Negative powers are defined iff A is invertible, and if so the result
///  is the |N|th power of the inverse of A (which is equal to the inverse
///  of the |N|th power of A).</remarks>
function mpow(const A: TComplexMatrix; const N: Integer): TComplexMatrix; overload;

/// <summary>Returns the unique positive semidefinite square root of a given
///  positive semidefinite symmetric matrix.</summary>
function msqrt(const A: TComplexMatrix): TComplexMatrix; overload;

function SameMatrix(const A, B: TComplexMatrix;
  const Epsilon: Extended = 0): Boolean; overload; inline;
function SameMatrixEx(const A, B: TComplexMatrix;
  const Epsilon: Extended = 0): Boolean; overload; inline;

/// <summary>Returns the complex zero matrix of a given size.</summary>
function ComplexZeroMatrix(const ASize: TMatrixSize): TComplexMatrix; inline;

/// <summary>Returns the complex identity matrix of a given size.</summary>
function ComplexIdentityMatrix(ASize: Integer): TComplexMatrix; // empty matrix aware

/// <summary>Returns the complex reversal matrix of a given size.</summary>
function ComplexReversalMatrix(ASize: Integer): TComplexMatrix;

/// <summary>Returns a diagonal matrix constructed using values from
///  a given array of real numbers.</summary>
/// <see cref="DirectSum" />
function diag(const AElements: array of TASC): TComplexMatrix; overload;

/// <summary>Returns a diagonal matrix constructed using values from
///  a given complex vector.</summary>
/// <see cref="DirectSum" />
function diag(const AElements: TComplexVector): TComplexMatrix; inline; overload;

/// <summary>Returns the outer product between two vectors.</summary>
function OuterProduct(const u, v: TComplexVector): TComplexMatrix; overload; inline;

/// <summary>Returns the n×n circulant matrix whose first row is a given vector.
///  </summary>
function CirculantMatrix(const AElements: array of TASC): TComplexMatrix; overload;

/// <summary>Returns the Toeplitz matrix with a given first row and a given first
///  column.</summary>
function ToeplitzMatrix(const AFirstRow,
  AFirstCol: array of TASC): TComplexMatrix; overload;

/// <summary>Returns the Hankel matrix with a given first row and a given last
///  column.</summary>
function HankelMatrix(const AFirstRow,
  ALastCol: array of TASC): TComplexMatrix; overload;

/// <summary>Returns a Vandermonde matrix produced by a given vector.</summary>
/// <param name="AElements">The vector used as the second column in the matrix.
///  </param>
/// <param name="ACols">The number of columns in the matrix. If omitted,
///  the matrix will be square.</param>
function VandermondeMatrix(const AElements: array of TASC;
  ACols: Integer = 0): TComplexMatrix; overload;

/// <summary>Returns the matrix for a reflection in a hyperplane in some dimension.
///  </summary>
/// <param name="u">A vector perpendicular to the hyperplane.</param>
/// <remarks>A reflection matrix like this is also called a Householder matrix.
///  </remarks>
function ReflectionMatrix(const u: TComplexVector): TComplexMatrix; overload;

/// <summary>Returns the matrix for a reflection in a hyperplane in some dimension.
///  </summary>
/// <param name="u">A unit vector perpendicular to the hyperplane.</param>
/// <remarks>A reflection matrix like this is also called a Householder matrix.
///  The vector u MUST be a unit vector.</remarks>
function QuickReflectionMatrix(const u: TComplexVector): TComplexMatrix; overload; inline;

/// <summary>Returns the Hadamard product between two matrices of the same
///  size, that is, the matrix obtained by taking element-wise products.</summary>
function HadamardProduct(const A, B: TComplexMatrix): TComplexMatrix; overload;

/// <summary>Returns the direct sum of two matrices.</summary>
/// <see cref="diag" />
function DirectSum(const A, B: TComplexMatrix): TComplexMatrix; overload; inline;

/// <summary>Returns the direct sum of an open array of matrices.</summary>
/// <see cref="diag" />
function DirectSum(const Blocks: array of TComplexMatrix): TComplexMatrix; overload;

/// <summary>Determines whether two matrices commute or not.</summary>
function Commute(const A, B: TComplexMatrix;
  const Epsilon: Extended = 0): Boolean; overload; inline;

function accumulate(const A: TComplexMatrix; const AStart: TASC;
  AAccumulator: TAccumulator<TASC>): TASC; overload; inline;

/// <summary>Returns the sum of all elements of the matrix.</summary>
function sum(const A: TComplexMatrix): TASC; overload; inline;

/// <summary>Returns the arithmetic mean of all elements of the matrix.</summary>
function ArithmeticMean(const A: TComplexMatrix): TASC; overload; inline;

/// <summary>Returns the geometric mean of all elements of the matrix.</summary>
function GeometricMean(const A: TComplexMatrix): TASC; overload; inline;

/// <summary>Returns the harmonic mean of all elements of the matrix.</summary>
function HarmonicMean(const A: TComplexMatrix): TASC; overload; inline;

/// <summary>Returns the product of all elements of the matrix.</summary>
function product(const A: TComplexMatrix): TASC; overload; inline;

/// <summary>Returns true iff there exists an entry of the matrix satisfying
///  the given predicate.</summary>
function exists(const A: TComplexMatrix; APredicate: TPredicate<TASC>): Boolean; overload;

/// <summary>Returns the number of matrix entries that satisfy the given
///  predicate.</summary>
function count(const A: TComplexMatrix; APredicate: TPredicate<TASC>): Integer; overload;

/// <summary>Returns the number of instances of a given value in the matrix.
///  </summary>
function count(const A: TComplexMatrix; const AValue: TASC): Integer; overload; inline;

/// <summary>Returns true iff all entries of the matrix satisfy
///  the given predicate.</summary>
function ForAll(const A: TComplexMatrix; APredicate: TPredicate<TASC>): Boolean; overload;

/// <summary>Returns true iff a specific value is found in the matrix.</summary>
function contains(const A: TComplexMatrix; AValue: TASC): Boolean; overload; inline;

function TryForwardSubstitution(const A: TComplexMatrix; const Y: TComplexVector;
  out Solution: TComplexVector; IsUnitDiagonal: Boolean = False): Boolean; overload;

/// <summary>Solves the matrix equation AX = Y where A is a lower triangular
///  n×n matrix and X and Y are n-dimensional vectors using forward substitution.
///  </summary>
/// <param name="A">A square matrix of size n, which MUST be lower triangular.</param>
/// <param name="Y">An n-dimensional vector.</param>
/// <param name="IsUnitDiagonal">If true, the routine assumes that the main
///  diagonal of <c>A</c> consists of only 1's, without caring about the actual
///  elements on the main diagonal.</param>
/// <returns>The unique solution X of the equation AX = Y, if A is non-singular.</returns>
/// <exception cref="EMathException">Raised if A is not square and non-singular.
///  Also raised if the size of A differs from the dimension of Y.</exception>
function ForwardSubstitution(const A: TComplexMatrix; const Y: TComplexVector;
  IsUnitDiagonal: Boolean = False): TComplexVector; overload;

function TryBackSubstitution(const A: TComplexMatrix; const Y: TComplexVector;
  out Solution: TComplexVector): Boolean; overload;

/// <summary>Solves the matrix equation AX = Y where A is an upper triangular
///  n×n matrix and X and Y are n-dimensional vectors using backward
///  substitution.</summary>
/// <param name="A">A square matrix of size n, which MUST be upper triangular.</param>
/// <param name="Y">An n-dimensional vector.</param>
/// <returns>The unique solution X of the equation AX = Y, if A is non-singular.</returns>
/// <exception cref="EMathException">Raised if A is not square and non-singular.
///  Also raised if the size of A differs from the dimension of Y.</exception>
function BackSubstitution(const A: TComplexMatrix; const Y: TComplexVector): TComplexVector; overload;

/// <summary>Solves the matrix equation AX = Y.</summary>
/// <param name="AAugmented">The augmented matrix [A|Y].</param>
/// <returns>The unique solution X if a unique solution exists.</returns>
/// <exception cref="EMathException">Raised if a unique solution does not
///  exist.</exception>
function SysSolve(const AAugmented: TComplexMatrix): TComplexVector; overload; inline;

function TrySysSolve(const A: TComplexMatrix; const Y: TComplexVector;
  out Solution: TComplexVector): Boolean; overload;

function TrySysSolve(const A: TComplexMatrix; const Y: TComplexMatrix;
  out Solution: TComplexMatrix): Boolean; overload;

/// <summary>Solves the matrix equation AX = Y.</summary>
/// <param name="A">The matrix of coefficients, A.</param>
/// <param name="Y">The right-hand side of the equation, Y.</param>
/// <returns>The unique solution X if a unique solution exists.</returns>
/// <exception cref="EMathException">Raised if a unique solution does not
///  exist.</exception>
function SysSolve(const A: TComplexMatrix; const Y: TComplexVector): TComplexVector; overload;
function SysSolve(const A: TComplexMatrix; const Y: TComplexMatrix): TComplexMatrix; overload;

/// <summary>Given a set { (x_0, y_0), (x_1, y_1), ..., (x_(k-1), y_(k-1)) } of
///  points, this function determines the polynomial of degree at most n
///  whose graph best connects to the points in the least-squares sense.</summary>
/// <param name="X">The k-dimensional vector of X coordinates.</param>
/// <param name="Y">The k-dimensional vector of Y coordinates.</param>
/// <param name="ADegree">The maximum degree n >= 0 of the polynomial.</param>
/// <returns>A complex vector consisting of the n + 1 coefficients c_0, c_1, ...,
///  c_n of the optimal polynomial c_0 + c_1 x + c_2 x^2 + ... + c_n x^n.</returns>
function LeastSquaresPolynomialFit(const X, Y: TComplexVector;
  ADegree: Integer): TComplexVector; overload;

/// <summary>A quick but unsafe procedure to copy data from one vector
///  to another.</summary>
/// <param name="ASource">The source vector.</param>
/// <param name="AFrom">The first component of the source vector to be copied.
///  </param>
/// <param name="ATo">The last component of the source vector to be copied.
///  </param>
/// <param name="ATarget">The vector to copy to.</param>
/// <param name="ATargetFrom">The index of the first component of the target
///  vector to be overwritten by the copied data.</param>
/// <remarks>The specified components in the source vector MUST exist, and the
///  target vector MUST be large enough to contain all data.</remarks>
procedure VectMove(const ASource: TComplexVector; const AFrom, ATo: Integer;
  var ATarget: TComplexVector; const ATargetFrom: Integer = 0); overload; inline;

/// <summary>A quick but unsafe procedure to copy data from a vector to a part
///  of a column of a matrix.</summary>
/// <param name="ASource">The source vector.</param>
/// <param name="AFrom">The first component of the source vector to be copied.
///  </param>
/// <param name="ATo">The last component of the source vector to be copied.
///  </param>
/// <param name="ATarget">The matrix to write data to.</param>
/// <param name="ATargetCol">The index of the column of the matrix to write to.
///  </param>
/// <param name="ATargetFirstRow">The index of the first row in the matrix
///  column to overwrite.</param>
/// <remarks>The specified components in the source vector MUST exist, and the
///  target matrix MUST be large enough to contain all data.</remarks>
procedure VectMoveToMatCol(const ASource: TComplexVector; const AFrom, ATo: Integer;
  var ATarget: TComplexMatrix; const ATargetCol: Integer;
  const ATargetFirstRow: Integer = 0); overload;

/// <summary>A quick but unsafe procedure to copy data from a vector to a part
///  of a row of a matrix.</summary>
/// <param name="ASource">The source vector.</param>
/// <param name="AFrom">The first component of the source vector to be copied.
///  </param>
/// <param name="ATo">The last component of the source vector to be copied.
///  </param>
/// <param name="ATarget">The matrix to write data to.</param>
/// <param name="ATargetRow">The index of the row of the matrix to write to.
///  </param>
/// <param name="ATargetFirstCol">The index of the first column in the matrix
///  row to overwrite.</param>
/// <remarks>The specified components in the source vector MUST exist, and the
///  target matrix MUST be large enough to contain all data.</remarks>
procedure VectMoveToMatRow(const ASource: TComplexVector; const AFrom, ATo: Integer;
  var ATarget: TComplexMatrix; const ATargetRow: Integer;
  const ATargetFirstCol: Integer = 0); overload; inline;

/// <summary>A quick but unsafe procedure to copy data from one matrix to
///  another.</summary>
/// <param name="ASource">The matrix to copy from.</param>
/// <param name="ARect">A rectangle describing the submatrix to copy; both
///  the top-left and the bottom-right elements are included in the submatrix.
///  </param>
/// <param name="ATarget">The matrix to copy to.</param>
/// <param name="ATargetTopLeft">The top-left element in the destination matrix
///  to be overwritten.</param>
/// <remarks>The specified elements in the source matrix MUST exist, and the
///  target matrix MUST be large enough to contain all data.</remarks>
procedure MatMove(const ASource: TComplexMatrix; const ARect: TRect;
  var ATarget: TComplexMatrix; const ATargetTopLeft: TPoint); overload;
procedure MatMove(const ASource: TComplexMatrix; var ATarget: TComplexMatrix;
  const ATargetTopLeft: TPoint); overload; inline;

/// <summary>A quick but unsafe procedure to copy data from a column in a matrix
///  to a vector.</summary>
/// <param name="ASource">The matrix to copy data from.</param>
/// <param name="AColumn">The column of the matrix to copy data from.</param>
/// <param name="AFrom">The row index of the first element in the column to
///  copy.</param>
/// <param name="ATo">The row index of the last element in the column to
///  copy.</param>
/// <param name="ATarget">The vector to copy data into.</param>
/// <param name="ATargetFrom">The index of the first component of the vector
///  to overwrite.</param>
/// <remarks>The specified elements in the source matrix MUST exist, and the
///  target vector MUST be large enough to contain all data.</remarks>
procedure MatMoveColToVect(const ASource: TComplexMatrix; const AColumn: Integer;
  const AFrom, ATo: Integer; var ATarget: TComplexVector;
  const ATargetFrom: Integer = 0); overload;

/// <summary>A quick but unsafe procedure to copy data from a row in a matrix
///  to a vector.</summary>
/// <param name="ASource">The matrix to copy data from.</param>
/// <param name="ARow">The row of the matrix to copy data from.</param>
/// <param name="AFrom">The column index of the first element in the row to
///  copy.</param>
/// <param name="ATo">The column index of the last element in the row to
///  copy.</param>
/// <param name="ATarget">The vector to copy data into.</param>
/// <param name="ATargetFrom">The index of the first component of the vector
///  to overwrite.</param>
/// <remarks>The specified elements in the source matrix MUST exist, and the
///  target vector MUST be large enough to contain all data.</remarks>
procedure MatMoveRowToVect(const ASource: TComplexMatrix; const ARow: Integer;
  const AFrom, ATo: Integer; var ATarget: TComplexVector;
  const ATargetFrom: Integer = 0); overload; inline;

/// <summary>A quick but unsafe procedure to perform an inplace multiplication
///  of a submatrix with a square matrix from the left.</summary>
/// <param name="ATarget">The matrix to modify.</param>
/// <param name="ARect">A rectangle that identifies the submatrix to multiply.
///  Both the upper-left and the bottom-right corners belong to the submatrix.
///  The submatrix has format n × m. This parameter MUST specify a valid
///  submatrix.</param>
/// <param name="AFactor">The matrix to multiply the submatrix by, from the left.
///  This MUST be a matrix of size n × n.</param>
procedure MatMulBlockInplaceL(var ATarget: TComplexMatrix; const ARect: TRect;
  const AFactor: TComplexMatrix); overload;

/// <summary>A quick but unsafe procedure to perform an inplace multiplication
///  of a square submatrix with a square matrix from the left.</summary>
/// <param name="ATarget">The matrix to modify.</param>
/// <param name="APoint">The index of the upper-left element of the submatrix.</param>
/// <param name="AFactor">The matrix to multiply the submatrix by, from the left.
///  This MUST be a matrix of size n × n.</param>
/// <remarks>The implied n × n submatrix MUST be valid.</remarks>
procedure MatMulBlockInplaceL(var ATarget: TComplexMatrix; const ATopLeft: TPoint;
  const AFactor: TComplexMatrix); overload; inline;

/// <summary>
///  <para>Performs the operation</para>
///  <para><c>ATarget := ATarget * DirectSum(IdentityMatrix(k), AFactor)</c></para>
///  <para>where <c>k = n - m</c>, <c>n</c> is the size of the square matrix
///   <c>ATarget</c>, and <c>m <= n</c> is the size of the square matrix
///   <c>AFactor</c>.</para>
/// </summary>
/// <param name="ATarget">An n×n matrix. This MUST be square.</param>
/// <param name="AFactor">An m×m matrix which MUST be square and where m
///  MUST be <= n.</param>
procedure MatMulBottomRight(var ATarget: TComplexMatrix; const AFactor: TComplexMatrix); overload;

/// <summary>A quick but unsafe procedure to fill a submatrix with a given
///  complex number.</summary>
/// <param name="ATarget">The matrix to modify.</param>
/// <param name="ARect">A rectangle describing the submatrix to fill; both
///  the top-left and the bottom-right elements of the rectangle belong to the
///  submatrix.</param>
/// <param name="Value">The complex number to fill the submatrix with.</param>
/// <remarks>The specified submatrix MUST belong to the matrix.</remarks>
procedure MatBlockFill(var ATarget: TComplexMatrix; const ARect: TRect;
  const Value: TASC); overload;


// Various square roots
function sqrt(const X: TASR): TASR; overload; inline;
function sqrt(const z: TASC): TASC; overload; inline;
function sqrt(const A: TRealMatrix): TRealMatrix; overload; inline;
function sqrt(const A: TComplexMatrix): TComplexMatrix; overload; inline;


// Common technical declarations and definitions
const
  /// <summary>Indicates whether the ASNum.pas unit was compiled with the
  ///  <c>REALCHECK</c> compiler directive. This compiler directive enables the
  ///  "real check" feature of the complex elementary functions. When turned on,
  ///  these functions first test to see if the given argument happens to be a real
  ///  number (zero imaginary part). If so, the complex elementary function calls
  ///  the standard real elementary function instead of using the general, complex
  ///  algorithm or formula to compute the value. In general, this improves
  ///  performance and accuracy if a real value is passed to a complex function.
  ///  </summary>
  /// <remarks>Normally, this functionality should be turned on. It may be turned
  ///  off for purposes of testing, however.</remarks>
  RealCheck = {$IFDEF REALCHECK}True{$ELSE}False{$ENDIF};

var
  /// <summary>The maximum number of threads to use for computations. The actual
  ///  number of threads used in a computation is never larger than this value,
  ///  but it may be smaller if the computer doesn't have enough "threads" (cores
  ///  or HT). The actual maximum number of threads is the smallest value of this
  ///  variable and the number of logical processors as reported by the operating
  ///  system.</summary>
  MaxThreadCount: Integer = 8;

function GetTotalCacheSize: Integer;
procedure ClearCaches;

const
  InvLn10: TASC = (Re: 0.434294481903251827651128918916605082294397005803666566114; Im: 0);

function DoubleListToASR2s(const LList: TArray<Double>): TArray<TASR2>;
function DoubleListToASR3s(const LList: TArray<Double>): TArray<TASR3>;

implementation

uses
  Classes, StrUtils, Windows, Character, WideStrUtils;

var
  FS: TFormatSettings;

procedure DoYield; inline;
begin
  if Assigned(GTYieldProc) then
    GTYieldProc;
end;


{ **************************************************************************** }
{ Utilities                                                                    }
{ **************************************************************************** }

// TODO: The TInt64Guard record can very much be improved.

class function TInt64Guard.CanUnMin(const A: Int64): Boolean;
begin
  Result := A <> A.MinValue;
end;

class function TInt64Guard.CanAbs(const A: Int64): Boolean;
begin
  Result := A <> A.MinValue;
end;

class function TInt64Guard.CanAdd(const A, B: Int64): Boolean;
const
  SafeMin = Int64.MinValue div 2 + 1;
  SafeMax = Int64.MaxValue div 2 - 1;
begin
  Result := InRange(A, SafeMin, SafeMax) and InRange(A, SafeMin, SafeMax);
end;

class function TInt64Guard.CanSub(const A, B: Int64): Boolean;
const
  SafeMin = Int64.MinValue div 2 + 1;
  SafeMax = Int64.MaxValue div 2 - 1;
begin
  Result := InRange(A, SafeMin, SafeMax) and InRange(A, SafeMin, SafeMax);
end;

class function TInt64Guard.CanMul(const A, B: Int64): Boolean;
const
  SafeMin = Extended(Int64.MinValue) / 2;
  SafeMax = Extended(Int64.MaxValue) / 2;
begin
  Result := InRange(Extended(A) * Extended(B), SafeMin, SafeMax);
end;

class function TInt64Guard.CanDiv(const A, B: Int64): Boolean;
begin
  Result := (A <> A.MinValue) or (B <> -1);
end;

class function TInt64Guard.CanDivEv(const A, B: Int64): Boolean;
begin
  Result := CanDiv(A, B) and (A mod B = 0);
end;

class function TInt64Guard.CanSqr(const A: Int64): Boolean;
begin
  Result := InRange(A, -3037000499, 3037000499);
end;

function GetThreadCount: Integer; inline;
begin
  Result := Min(CPUCount, MaxThreadCount);
end;

const
  FuzzFactor = 1000;
  ExtendedResolution = 1E-19 * FuzzFactor;
  DoubleResolution = 1E-15 * FuzzFactor;

function SameValue2(const A, B: Extended): Boolean;
var
  Epsilon: Extended;
begin
  Epsilon := Min(Abs(A), Abs(B)) * ExtendedResolution;
  if A > B then
    Result := (A - B) <= Epsilon
  else
    Result := (B - A) <= Epsilon;
end;

function SameValue2(const A, B: Double): Boolean;
var
  Epsilon: Double;
begin
  Epsilon := Min(Abs(A), Abs(B)) * DoubleResolution;
  if A > B then
    Result := (A - B) <= Epsilon
  else
    Result := (B - A) <= Epsilon;
end;

function SameValueEx(const A, B: Extended; Epsilon: Extended): Boolean; overload;
begin
  if Epsilon = 0 then
    Epsilon := Max(Min(Abs(A), Abs(B)) * ExtendedResolution, ExtendedResolution)
  else
    Epsilon := Max(Min(Abs(A), Abs(B)) * Epsilon, Epsilon);
  if A > B then
    Result := (A - B) <= Epsilon
  else
    Result := (B - A) <= Epsilon;
end;

function SameValueEx(const A, B: Double; Epsilon: Double): Boolean; overload;
begin
  if Epsilon = 0 then
    Epsilon := Max(Min(Abs(A), Abs(B)) * DoubleResolution, DoubleResolution)
  else
    Epsilon := Max(Min(Abs(A), Abs(B)) * Epsilon, Epsilon);
  if A > B then
    Result := (A - B) <= Epsilon
  else
    Result := (B - A) <= Epsilon;
end;

function inv(const X: TASR): TASR; inline;
begin
  Result := 1 / X;
end;

function cinv(const X: TASC): TASC; inline;
begin
  Result := 1 / X;
end;

function NN(N: Integer): Integer; inline;
begin
  if N >= 0 then
    Result := N
  else
    Result := 0;
end;

/// <summary>Returns (-1)^N.</summary>
/// <returns>(-1)^N</returns>
function AltSgn(const N: Integer): Integer; inline;
begin
  if N mod 2 = 0 then
    Result := 1
  else
    Result := -1;
end;

function CreateIntSequence(AStart, AEnd: Integer): TArray<Integer>;
var
  i: Integer;
begin
  if AEnd >= AStart then
  begin
    SetLength(Result, AEnd - AStart + 1);
    for i := 0 to High(Result) do
      Result[i] := AStart + i
  end
  else
  begin
    SetLength(Result, AStart - AEnd + 1);
    for i := 0 to High(Result) do
      Result[i] := AStart - i;
  end;
end;

function CreateIntSequence(AStart, AEnd, AStep: Integer): TArray<Integer>;
var
  i: Integer;
begin
  if AStep = 0 then
    raise EMathException.Create('Cannot create an integer sequence with step size 0.');
  AStep := Abs(AStep);
  if AEnd >= AStart then
  begin
    SetLength(Result, 1 + (AEnd - AStart) div AStep);
    for i := 0 to High(Result) do
      Result[i] := AStart + i * AStep;
  end
  else
  begin
    SetLength(Result, 1 + (AStart - AEnd) div AStep);
    for i := 0 to High(Result) do
      Result[i] := AStart - i * AStep;
  end;
end;

function CreateIntSequence64(AStart, AEnd: Int64): TArray<Int64>;
var
  i: Int64;
begin
  if AEnd >= AStart then
  begin
    SetLength(Result, AEnd - AStart + 1);
    for i := 0 to High(Result) do
      Result[i] := AStart + i
  end
  else
  begin
    SetLength(Result, AStart - AEnd + 1);
    for i := 0 to High(Result) do
      Result[i] := AStart - i;
  end;
end;

function CreateIntSequence64(AStart, AEnd, AStep: Int64): TArray<Int64>;
var
  i: Int64;
begin
  if AStep = 0 then
    raise EMathException.Create('Cannot create an integer sequence with step size 0.');
  AStep := Abs(AStep);
  if AEnd >= AStart then
  begin
    SetLength(Result, 1 + (AEnd - AStart) div AStep);
    for i := 0 to High(Result) do
      Result[i] := AStart + i * AStep;
  end
  else
  begin
    SetLength(Result, 1 + (AStart - AEnd) div AStep);
    for i := 0 to High(Result) do
      Result[i] := AStart - i * AStep;
  end;
end;

procedure TranslateIntSequence(var ASeq: TArray<Integer>; const Offset: Integer = -1);
var
  i: Integer;
begin
  for i := Low(ASeq) to High(ASeq) do
    Inc(ASeq[i], Offset);
end;

function TranslatedIntSequence(const ASeq: array of Integer;
  const Offset: Integer = -1): TArray<Integer>;
var
  i: Integer;
begin
  SetLength(Result, Length(ASeq));
  for i := 0 to High(ASeq) do
    Result[i] := ASeq[i] + Offset;
end;

procedure TranslatePoint(var APoint: TPoint; const Offset: Integer = -1);
begin
  APoint.X := APoint.X + Offset;
  APoint.Y := APoint.Y + Offset;
end;

function TranslatedPoint(const APoint: TPoint; const Offset: Integer = -1): TPoint;
begin
  Result.X := APoint.X + Offset;
  Result.Y := APoint.Y + Offset;
end;

function ParseRangeSeq(const ARanges: array of TRange;
  const ALength: Integer): TArray<Integer>;
var
  List: TList<Integer>;
  i, j: Integer;
  a, b: Integer;
  Step: Integer;
begin
  List := TList<Integer>.Create;
  try
    for i := 0 to High(ARanges) do
    begin
      a := ARanges[i].From;
      if a < 0 then
        a := ALength + 1 + a;
      b := ARanges[i].&To;
      if b < 0 then
        b := ALength + 1 + b;
      Step := ARanges[i].Step;
      case CompareValue(a, b) of
        LessThanValue:
          begin
            j := max(a, 1);
            while j <= min(b, ALength) do
            begin
              List.Add(j);
              Inc(j, Step);
            end;
          end;
        EqualsValue:
          if InRange(a, 1, ALength) then
            List.Add(a);
        GreaterThanValue:
          begin
            j := min(a, ALength);
            while j >= max(b, 1) do
            begin
              List.Add(j);
              Dec(j, Step);
            end;
          end;
      end;
    end;
    Result := List.ToArray;
  finally
    List.Free;
  end;
end;

function IntArrToRealArr(const AArray: TArray<Integer>): TArray<TASR>;
var
  i: Integer;
begin
  SetLength(Result, Length(AArray));
  for i := 0 to High(Result) do
    Result[i] := AArray[i];
end;

function Int64ArrToRealArr(const AArray: TArray<Int64>): TArray<TASR>;
var
  i: Integer;
begin
  SetLength(Result, Length(AArray));
  for i := 0 to High(Result) do
    Result[i] := AArray[i];
end;

function IntArrToStrArr(const AArray: TArray<Integer>): TArray<string>;
var
  i: Integer;
begin
  SetLength(Result, Length(AArray));
  for i := 0 to High(Result) do
    Result[i] := AArray[i].ToString;
end;

function Int64ArrToStrArr(const AArray: TArray<Int64>): TArray<string>;
var
  i: Integer;
begin
  SetLength(Result, Length(AArray));
  for i := 0 to High(Result) do
    Result[i] := AArray[i].ToString;
end;

function ASR_COUNT(const A, B: TASR): TASR;
begin
  Result := A + 1;
end;

function ASR_PLUS(const A, B: TASR): TASR;
begin
  Result := A + B;
end;

function ASR_TIMES(const A, B: TASR): TASR;
begin
  Result := A * B;
end;

function DoubleListToASR2s(const LList: TArray<Double>): TArray<TASR2>;
begin
  SetLength(Result, Length(LList) div 2);
  for var i := 0 to High(Result) do
  begin
    Result[i].X := LList[2*i    ];
    Result[i].Y := LList[2*i + 1];
  end;
end;

function DoubleListToASR3s(const LList: TArray<Double>): TArray<TASR3>;
begin
  SetLength(Result, Length(LList) div 3);
  for var i := 0 to High(Result) do
  begin
    Result[i].X := LList[3*i    ];
    Result[i].Y := LList[3*i + 1];
    Result[i].Z := LList[3*i + 2];
  end;
end;



{ **************************************************************************** }
{ TFormatStyleHelper                                                           }
{ **************************************************************************** }

function TFormatStyleHelper.ToString: string;
begin
  Result := FormatStyleNames[Self];
end;

class function TFormatStyleHelper.FromString(const S: string): TFormatStyle;
resourcestring
  SUnknownNumberFormatName = 'Unknown number format "%s".';
var
  i: TFormatStyle;
begin
  for i := Low(TFormatStyle) to High(TFormatStyle) do
    if i.ToString = S then
      Exit(i);
  raise Exception.CreateFmt(SUnknownNumberFormatName, [S]);
end;


{ **************************************************************************** }
{ TRationalNumber                                                              }
{ **************************************************************************** }

constructor TRationalNumber.Create(const ANumerator, ADenominator: TASI);
begin
  Numerator := ANumerator;
  Denominator := ADenominator;
  ToSimplestForm;
end;

class procedure TRationalNumber.ErrNoRep;
begin
  raise EMathException.Create('Rational number cannot be represented.');
end;

function __DigChr(ADig: Integer): Char; inline;
begin
  Result := Chr(Ord('0') + ADig);
end;

function TRationalNumber.ToDecimalString(
  const AFormatOptions: TFormatOptions): string;
const
  NegExpLimit = 4;
  RDMs: array[TNumberFormat] of TRatDigitMode = (rdmFixedSignificant,
    rdmFixedSignificant, rdmFractional, rdmSignificant, rdmSignificant);
  FO: array[TNumberFormat] of Boolean = (False, False, True, True, False);
var
  NF: TNumberFormat;
  D: TArray<Integer>;
  FirstDigitPos, FirstSigDigitPos: Integer;
  NumDigits,
  NumIntDigits,
  NumFracDigits: Integer;
  ResLen: Integer;
  c: Integer;
  i: Integer;
  dgt: Char;
  LNumDigits: Integer;
begin

  if not valid then
    Exit('NaN');

  NF := AFormatOptions.Numbers.NumberFormat;
  LNumDigits := Max(AFormatOptions.Numbers.NumDigits, IfThen(NF = nfFixed, 0, 1));

  if ((Denominator = 1) or (Numerator = 0)) and (NF in [nfDefault, nfFraction]) then
    Exit(IntegerToStr(Numerator, AFormatOptions));

  // Get digit array
  try
    D := GetDigits(Self, LNumDigits, RDMs[NF], FO[NF], True, @FirstDigitPos, @FirstSigDigitPos);
  except
    Exit(RealToStr(TASR(Self), AFormatOptions));
  end;

  NumDigits := Length(D);
  NumIntDigits := IfThen(NF in [nfExponent, nfDefExp], 1, Max(FirstDigitPos + 1, 0));
  NumFracDigits := NumDigits - NumIntDigits;

  Assert(NumDigits >= 1);
  Assert(NumIntDigits >= 0);

  case NF of
    nfDefault, nfFraction, nfFixed:
      begin

        if NF in [nfDefault, nfFraction] then
          if (NumIntDigits > LNumDigits) or (FirstSigDigitPos < -NegExpLimit) then
            Exit(ToDecimalString(FixNumFmt(AFormatOptions, nfDefExp)));

        // Compute result length
        ResLen := NumDigits;
        if (Numerator < 0) and (FirstSigDigitPos <> FirstSigDigitPos.MaxValue) then
          Inc(ResLen, 1);
        if (NumIntDigits > 0) and (AFormatOptions.Numbers.IntGrouping <> 0) then
          Inc(ResLen, Ceil(NumIntDigits / AFormatOptions.Numbers.IntGrouping) - 1);
        if NumFracDigits > 0 then
          Inc(ResLen, 1); // decimal separator
        if (NumFracDigits > 0) and (AFormatOptions.Numbers.FracGrouping <> 0) then
          Inc(ResLen, Ceil(NumFracDigits / AFormatOptions.Numbers.FracGrouping) - 1);

        // Build result
        SetLength(Result, ResLen);

        c := 0; // index of last char written (valid at the beginning of each new part)

        // - Minus sign
        if (Numerator < 0) and (FirstSigDigitPos <> FirstSigDigitPos.MaxValue) then
        begin
          Inc(c);
          Result[c] := AFormatOptions.Numbers.MinusSign;
        end;

        // - Integer part
        for i := 0 to NumIntDigits - 1 do
        begin
          if
            (AFormatOptions.Numbers.IntGrouping <> 0)
              and
            (i > 0)
              and
            ((NumIntDigits - i) mod (AFormatOptions.Numbers.IntGrouping) = 0)
          then
          begin
            Inc(c);
            Result[c] := AFormatOptions.Numbers.IntGropingChar;
          end;
          Inc(c);
          Result[c] := __DigChr(D[i]);
        end;

        if NumFracDigits > 0 then
        begin

          // - Decimal separator
          Inc(c);
          Result[c] := AFormatOptions.Numbers.DecimalSeparator;

          // - Fractional part
          for i := NumIntDigits to NumDigits - 1 do
          begin
            if
              (AFormatOptions.Numbers.FracGrouping <> 0)
                and
              (i > NumIntDigits)
                and
              ((i - NumIntDigits) mod (AFormatOptions.Numbers.FracGrouping) = 0)
            then
            begin
              Inc(c);
              Result[c] := AFormatOptions.Numbers.FracGroupingChar;
            end;
            Inc(c);
            Result[c] := __DigChr(D[i]);
          end;

        end;

        Assert(c = ResLen);

      end;

    nfExponent, nfDefExp:
      begin

        // Compute result length
        ResLen := NumDigits;
        if Numerator < 0 then
          Inc(ResLen, 1);
        if NumFracDigits >= 1 then
          Inc(ResLen, 1); // decimal separator
        if AFormatOptions.Numbers.PrettyExp then
          Inc(ResLen, 4)
        else
          Inc(ResLen, 1);
        if AFormatOptions.Numbers.PrettyExp or (NF = nfDefExp) then
          Inc(ResLen, FirstDigitPos.ToString.Length)
        else
          Inc(ResLen, System.Abs(FirstDigitPos).ToString.Length + 1 {always a sign on the exp, even if >= 0});
        if (NumFracDigits > 0) and (AFormatOptions.Numbers.FracGrouping <> 0) then
          Inc(ResLen, Ceil(NumFracDigits / AFormatOptions.Numbers.FracGrouping) - 1);

        // Build result
        SetLength(Result, ResLen);

        c := 0; // index of last char written (valid at the beginning of each new part)

        // - Minus sign
        if Numerator < 0 then
        begin
          Inc(c);
          Result[c] := AFormatOptions.Numbers.MinusSign;
        end;

        // - MSD
        Inc(c);
        Result[c] := __DigChr(D[0]);

        // - Decimal separator
        if NumFracDigits > 0 then
        begin
          Inc(c);
          Result[c] := AFormatOptions.Numbers.DecimalSeparator;
        end;

        // - Fractional digits
        for i := 1 to High(D) do
        begin
          if
            (AFormatOptions.Numbers.FracGrouping <> 0)
              and
            (i > 1)
              and
            (Pred(i) mod (AFormatOptions.Numbers.FracGrouping) = 0)
          then
          begin
            Inc(c);
            Result[c] := AFormatOptions.Numbers.FracGroupingChar;
          end;
          Inc(c);
          Result[c] := __DigChr(D[i])
        end;

        // - Exponent
        if AFormatOptions.Numbers.PrettyExp then
        begin
          Result[c + 1] := DOT_OPERATOR;
          Result[c + 2] := '1';
          Result[c + 3] := '0';
          Result[c + 4] := '^';
          Inc(c, 4);
        end
        else
        begin
          Inc(c);
          Result[c] := 'E';
        end;
        if (FirstDigitPos < 0) or not AFormatOptions.Numbers.PrettyExp and (NF = nfExponent) then
          Inc(c);
        if FirstDigitPos < 0 then
          Result[c] := AFormatOptions.Numbers.MinusSign
        else if not AFormatOptions.Numbers.PrettyExp and (NF = nfExponent) then
          Result[c] := '+';
        for dgt in System.Abs(FirstDigitPos).ToString do
        begin
          Inc(c);
          Result[c] := dgt;
        end;

        Assert(c = ResLen);

      end;
  else
    Result := RealToStr(TASR(Self), AFormatOptions);
  end;

end;

procedure TRationalNumber.ToSimplestForm;
var
  _gcd: TASI;
begin
  if Denominator = 0 then
    raise EMathException.Create('Rational number with zero denominator.');
  if Numerator = 0 then
  begin
    Denominator := 1;
    Exit;
  end;
  _gcd := gcd(Numerator, Denominator);
  Numerator := Numerator div _gcd;
  Denominator := Denominator div _gcd;
  if Denominator < 0 then
    if TInt64Guard.CanUnMin(Numerator) and TInt64Guard.CanUnMin(Denominator) then
    begin
      Numerator := -Numerator;
      Denominator := -Denominator;
    end
    else
      ErrNoRep;
end;

function TRationalNumber.ToString(const AFormatOptions: TFormatOptions;
  const ASymbol: string): string;
begin
  ToSimplestForm;
  // INTEGER
  if Denominator = 1 then
  begin
    if Numerator = 1 then
      Result := ASymbol
    else if Numerator = -1 then
      Result := AFormatOptions.Numbers.MinusSign + ASymbol
    else
      Result := IntegerToStr(Numerator, AFormatOptions) + DOT_OPERATOR + ASymbol
  end
  // NOT INTEGER
  else if Numerator = 1 then
    Result := ASymbol + '/' + IntegerToStr(Denominator, AFormatOptions)
  else if Numerator = -1 then
    Result := AFormatOptions.Numbers.MinusSign + ASymbol + '/' + IntegerToStr(Denominator, AFormatOptions)
  else
    Result := '(' + ToString(AFormatOptions) + ')' + DOT_OPERATOR + ASymbol;
end;

function TRationalNumber.ToString(const AFormatOptions: TFormatOptions): string;
begin

  if AFormatOptions.Numbers.NumberFormat = nfFraction then
  begin

    if Denominator = 1 then
      Result := IntegerToStr(Numerator, AFormatOptions)
    else
      Result := Format('%s/%s',
        [IntegerToStr(Numerator, AFormatOptions), IntegerToStr(Denominator, AFormatOptions)])

  end
  else
    Result := ToDecimalString(AFormatOptions)

end;

class operator TRationalNumber.Implicit(A: Integer): TRationalNumber;
begin
  Result.Numerator := A;
  Result.Denominator := 1;
end;

class operator TRationalNumber.Implicit(A: TASI): TRationalNumber;
begin
  Result.Numerator := A;
  Result.Denominator := 1;
end;

class operator TRationalNumber.Implicit(const X: TRationalNumber): TASR;
begin
  Result := X.Numerator / X.Denominator;
end;

class operator TRationalNumber.Equal(const X, Y: TRationalNumber): Boolean;
var
  tmp1, tmp2: TRationalNumber;
begin
  tmp1 := X;
  tmp2 := Y;
  tmp1.ToSimplestForm;
  tmp2.ToSimplestForm;
  Result := (tmp1.Numerator = tmp2.Numerator) and (tmp1.Denominator = tmp2.Denominator);
end;

class operator TRationalNumber.NotEqual(const X, Y: TRationalNumber): Boolean;
begin
  Result := not (X = Y);
end;

class function TRationalNumber.Power(const X: TRationalNumber;
  const N: TASI): TRationalNumber;
var
  c: Integer;
begin
  if not X.valid then
    Exit(InvalidRat);
  if (X.Numerator = 0) and (N = 0) then
    Exit(InvalidRat);
  if InRange(N, -1000, 1000) then
  begin
    c := System.Abs(N);
    Result := 1;
    while (c > 0) and Result.valid do
    begin
      Result := Result * X;
      Dec(c);
    end;
    if (N < 0) and Result.valid then
      Result := Result.inv;
  end
  else
    Result := InvalidRat;
end;

function TRationalNumber.Sign: TValueSign;
begin
  Result := Math.Sign(Numerator) * Math.Sign(Denominator);
end;

class operator TRationalNumber.Negative(const X: TRationalNumber): TRationalNumber;
begin
  if TInt64Guard.CanUnMin(X.Numerator) then
  begin
    Result.Numerator := -X.Numerator;
    Result.Denominator := X.Denominator;
  end
  else
    Result := InvalidRat;
end;

class operator TRationalNumber.Add(const X, Y: TRationalNumber): TRationalNumber;
var
  _lcm, XFactor, YFactor, XPart, YPart: TASI;
begin
  if TryLCM(X.Denominator, Y.Denominator, _lcm) then
  begin
    XFactor := _lcm div X.Denominator;
    YFactor := _lcm div Y.Denominator;
    if TInt64Guard.CanMul(X.Numerator, XFactor) and TInt64Guard.CanMul(Y.Numerator, YFactor) then
    begin
      XPart := X.Numerator * XFactor;
      YPart := Y.Numerator * YFactor;
      if TInt64Guard.CanAdd(XPart, YPart) then
      begin
        Result.Numerator := XPart + YPart;
        Result.Denominator := _lcm;
        Result.ToSimplestForm;
        Exit;
      end;
    end;
  end;
  Result := InvalidRat;
end;

class operator TRationalNumber.Subtract(const X, Y: TRationalNumber): TRationalNumber;
var
  _lcm, XFactor, YFactor, XPart, YPart: TASI;
begin
  if TryLCM(X.Denominator, Y.Denominator, _lcm) then
  begin
    XFactor := _lcm div X.Denominator;
    YFactor := _lcm div Y.Denominator;
    if TInt64Guard.CanMul(X.Numerator, XFactor) and TInt64Guard.CanMul(Y.Numerator, YFactor) then
    begin
      XPart := X.Numerator * XFactor;
      YPart := Y.Numerator * YFactor;
      if TInt64Guard.CanSub(XPart, YPart) then
      begin
        Result.Numerator := XPart - YPart;
        Result.Denominator := _lcm;
        Result.ToSimplestForm;
        Exit;
      end;
    end;
  end;
  Result := InvalidRat;
end;

class operator TRationalNumber.Multiply(const X, Y: TRationalNumber): TRationalNumber;
var
  tmp1, tmp2: TRationalNumber;
begin
  if TInt64Guard.CanMul(X.Numerator, Y.Numerator) and TInt64Guard.CanMul(X.Denominator, Y.Denominator) then
  begin
    Result.Numerator := X.Numerator * Y.Numerator;
    Result.Denominator := X.Denominator * Y.Denominator;
    Result.ToSimplestForm;
  end
  else
  begin
    tmp1 := RationalNumber(X.Numerator, Y.Denominator); // will reduce
    tmp2 := RationalNumber(Y.Numerator, X.Denominator); // will reduce
    if TInt64Guard.CanMul(tmp1.Numerator, tmp2.Numerator) and TInt64Guard.CanMul(tmp1.Denominator, tmp2.Denominator) then
    begin
      Result.Numerator := tmp1.Numerator * tmp2.Numerator;
      Result.Denominator := tmp1.Denominator * tmp2.Denominator;
      Result.ToSimplestForm;
    end
    else
      Result := InvalidRat;
  end
end;

class operator TRationalNumber.Divide(const X, Y: TRationalNumber): TRationalNumber;
begin
  Result := X * Y.inv;
end;

function TRationalNumber.inv: TRationalNumber;
begin
  if Numerator = 0 then
    raise EMathException.Create('Division by zero.');
  Result.Denominator := Numerator;
  Result.Numerator := Denominator;
  if Result.Denominator < 0 then
  begin
    if TInt64Guard.CanUnMin(Result.Numerator) and TInt64Guard.CanUnMin(Result.Denominator) then
    begin
      Result.Numerator := -Result.Numerator;
      Result.Denominator := -Result.Denominator;
    end
    else
      Result := InvalidRat;
  end
end;

function TRationalNumber.sqr: TRationalNumber;
begin
  Result := Self * Self;
end;

function TRationalNumber.str: string;
begin
  if Denominator = 1 then
    Result := Format('%d', [Numerator])
  else
    Result := Format('%d/%d', [Numerator, Denominator]);
end;

function TRationalNumber.valid: Boolean;
begin
  Result := Denominator <> 0;
end;

function TRationalNumber.Abs: TRationalNumber;
begin
  if TInt64Guard.CanAbs(Numerator) then
  begin
    Result.Numerator := System.Abs(Numerator);
    Result.Denominator := Denominator;
  end
  else
    Result := InvalidRat;
end;


{ **************************************************************************** }
{ TSimpleSymbolicForm                                                          }
{ **************************************************************************** }

constructor TSimpleSymbolicForm.Create(const AA, AB: TRationalNumber;
  const ASym: string; ASymVal: TASR);
begin
  A := AA;
  B := AB;
  Sym := ASym;
  SymVal := ASymVal;
end;

constructor TSimpleSymbolicForm.Create(pA, qA, pB, qB: TASI; const ASym: string;
  ASymVal: TASR);
begin
  A := RationalNumber(pA, qA);
  B := RationalNumber(pB, qB);
  Sym := ASym;
  SymVal := ASymVal;
end;

constructor TSimpleSymbolicForm.Create(const AA: TRationalNumber);
begin
  A := AA;
  B := 0;
  Sym := '';
  SymVal := 0;
end;

constructor TSimpleSymbolicForm.Create(pA, qA: TASI);
begin
  A := RationalNumber(pA, qA);
  B := 0;
  Sym := '';
  SymVal := 0;
end;

constructor TSimpleSymbolicForm.Create(const AB: TRationalNumber;
  const ASym: string; ASymVal: TASR);
begin
  A := 0;
  B := AB;
  Sym := ASym;
  SymVal := ASymVal;
end;

constructor TSimpleSymbolicForm.Create(pB, qB: TASI; const ASym: string;
  ASymVal: TASR);
begin
  A := 0;
  B := RationalNumber(pB, qB);
  Sym := ASym;
  SymVal := ASymVal;
end;

constructor TSimpleSymbolicForm.CreateInvalid(const Val: TASR);
begin
  SymVal := Val;
  MakeInvalid;
end;

class operator TSimpleSymbolicForm.Implicit(const X: TRationalNumber): TSimpleSymbolicForm;
begin
  Result := TSimpleSymbolicForm.Create(X);
end;

class operator TSimpleSymbolicForm.Implicit(const X: TSimpleSymbolicForm): TASR;
begin
  if X.valid then
    Result := TASR(X.A) + TASR(X.B) * X.SymVal
  else
    Result := X.SymVal;
end;

class operator TSimpleSymbolicForm.Add(const X: TRationalNumber;
  const Y: TSimpleSymbolicForm): TSimpleSymbolicForm;
begin
  Result := Y;
  Result.A := Result.A + X;
end;

class operator TSimpleSymbolicForm.Multiply(const X: TRationalNumber;
  const Y: TSimpleSymbolicForm): TSimpleSymbolicForm;
begin
  Result := TSimpleSymbolicForm.Create(X * Y.A, X * Y.B, Y.Sym, Y.SymVal);
end;

function TSimpleSymbolicForm.str: string;
begin
  Result := Format('(%s, %s, %s = %g)', [A.str, B.str, Sym, SymVal]);
end;

function TSimpleSymbolicForm.ToString(
  const AFormatOptions: TFormatOptions): string;
var
  LFormatOptions: TFormatOptions;
begin

  Result := '';

  if not valid then
    Exit;

  LFormatOptions := FixNumFmt(AFormatOptions, nfFraction);

  if (A = 0) and (B = 0) then
    Result := IntegerToStr(0, LFormatOptions)
  else if (A <> 0) and (B = 0) then
    Result := A.ToString(LFormatOptions)
  else if (A = 0) and (B <> 0) then
    Result := B.ToString(LFormatOptions, Sym)
  else
  begin
    if B.Numerator > 0 then
      Result := A.ToString(LFormatOptions) + ' + ' + B.ToString(LFormatOptions, Sym)
    else
      Result := A.ToString(LFormatOptions) + #32 + MINUS_SIGN + #32 + (-B).ToString(LFormatOptions, Sym)
  end;

end;

function TSimpleSymbolicForm.sstr: string;
begin
  Result := Format('(%s, %s, %s)', [A.str, B.str, Sym]);
end;

function TSimpleSymbolicForm.valid: Boolean;
begin
  Result := A.valid and B.valid;
end;

procedure TSimpleSymbolicForm.MakeInvalid;
begin
  A.Denominator := 0;
end;


{ **************************************************************************** }
{ TASR: The AlgoSim real number type                                           }
{ **************************************************************************** }

function FixNumFmt(const AOptions: TFormatOptions; ANumFmt: TNumberFormat): TFormatOptions;
begin
  Result := AOptions;
  Result.Numbers.NumberFormat := ANumFmt;
end;

function IntegerToStr(const x: TASI; const AOptions: TFormatOptions): string;
var
  y, Base, Rem: UInt64;
  i, c, pStart: Integer;
  NumDigits: array[0..255] of Char;
const
  Digits: array[0..35] of Char = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ';
begin

  if (AOptions.Numbers.Base = 10) or (AOptions.Numbers.Base < 2) or (AOptions.Numbers.Base > 36) or not TInt64Guard.CanAbs(x) then
  begin
    Result := x.ToString;
    if AOptions.Numbers.MinLength > 0 then
    begin
      if x < 0 then
      begin
        Assert((Result.Length > 0) and (Result[1] = '-'));
        Delete(Result, 1, 1);
      end;
      Result := Result.PadLeft(AOptions.Numbers.MinLength, '0');
      if x < 0 then
        Result := AOptions.Numbers.MinusSign + Result;
    end;
  end
  else
  begin
    if x = 0 then
      Result := StringOfChar('0', Max(1, AOptions.Numbers.MinLength))
    else
    begin
      Assert(x.Size = y.Size);
      Assert(8*x.Size <= Length(NumDigits)); { "<=" is correct: sign bit and minus sign }
      {$WARN COMPARISON_TRUE OFF}
      Assert(AOptions.Numbers.MinLength.MaxValue < Length(NumDigits)); { "<" is correct: minus sign not included in min len }
      {$WARN COMPARISON_TRUE DEFAULT}
      y := UInt64(Abs(x));
      Base := AOptions.Numbers.Base;
      FillChar(NumDigits, SizeOf(NumDigits), 0);
      c := 0;
      while y <> 0 do
      begin
        DivMod(y, Base, y, Rem);
        Assert(InRange(Rem, Low(Digits), High(Digits)));
        Assert(c <= High(NumDigits));
        NumDigits[c] := Digits[Rem];
        Inc(c);
      end;
      while c < AOptions.Numbers.MinLength do
      begin
        Assert(c <= High(NumDigits));
        NumDigits[c] := '0';
        Inc(c);
      end;
      if x < 0 then
      begin
        Assert(c <= High(NumDigits));
        NumDigits[c] := AOptions.Numbers.MinusSign;
        Inc(c);
      end;
      SetLength(Result, c);
      for i := 1 to c do
        Result[i] := NumDigits[c - i];
    end;
  end;

  // Minus sign
  if (Result.Length > 0) and (Result[1] = '-') then
    Result[1] := AOptions.Numbers.MinusSign;

  // Digit grouping
  if AOptions.Numbers.IntGrouping > 0 then
  begin

    i := Result.Length;

    if (Result.Length > 0) and (Result[1] = AOptions.Numbers.MinusSign) then
      pStart := 2
    else
      pStart := 1;

    c := 1;
    while i > pStart do
    begin
      if c mod AOptions.Numbers.IntGrouping = 0 then
        Insert(AOptions.Numbers.IntGropingChar, Result, i);
      Dec(i);
      Inc(c);
    end;

  end;

end;

function RealToStr(const x: TASR; const AOptions: TFormatOptions): string;
var
  i, c: Integer;
  pPeriod, pExp, pStart, pEnd: Integer;
begin

  if IsInfinite(x) then
    case Sign(x) of
      +1:
        Exit('∞');
      -1:
        Exit('−∞');
    end;

  case AOptions.Numbers.NumberFormat of
    nfFixed:
      Result := FloatToStrF(x, ffFixed, 18, AOptions.Numbers.NumDigits, FS);
    nfExponent:
      Result := FloatToStrF(x, ffExponent, AOptions.Numbers.NumDigits, 0, FS);
  else
    Result := FloatToStrF(x, ffGeneral, AOptions.Numbers.NumDigits, 0, FS);
  end;

  for i := 1 to Result.Length - 1 {sufficient} do
    if Result[i] = '-' then
      Result[i] := AOptions.Numbers.MinusSign;

  if AOptions.Numbers.PrettyExp then
    for i := 1 to Result.Length - 1 {required!} do
      if Result[i] = 'E' then
      begin
        Delete(Result, i, 1);
        if Result[i] = '+' then
          Delete(Result, i, 1);
        Insert('⋅10^', Result, i);
        Break;
      end;

  if AOptions.Numbers.IntGrouping + AOptions.Numbers.FracGrouping > 0 then
  begin

    pPeriod := 0;
    for i := 1 to Result.Length do
      if Result[i] = '.' then
      begin
        pPeriod := i;
        Break;
      end;

    pExp := 0;
    for i := 1 to Result.Length do
      if (Result[i] = 'E') or (Result[i] = DOT_OPERATOR) then
      begin
        pExp := i;
        Break;
      end;

    // Digit grouping on the integral part
    if AOptions.Numbers.IntGrouping > 0 then
    begin

      if pPeriod > 0 then
        i := pPeriod - 1
      else if pExp > 0 then
        i := pExp - 1
      else
        i := Result.Length;

      if (Result.Length > 0) and (Result[1] = AOptions.Numbers.MinusSign) then
        pStart := 2
      else
        pStart := 1;

      c := 1;
      while i > pStart do
      begin
        if c mod AOptions.Numbers.IntGrouping = 0 then
        begin
          Insert(AOptions.Numbers.IntGropingChar, Result, i);
          if pPeriod > 0 then
            Inc(pPeriod);
          if pExp > 0 then
            Inc(pExp);
        end;
        Dec(i);
        Inc(c);
      end;

    end;

    // Digit grouping on the fractional part
    if (AOptions.Numbers.FracGrouping > 0) and (pPeriod > 0) then
    begin

      if pExp > 0 then
        pEnd := pExp - 1
      else
        pEnd := Result.Length;

      i := pPeriod + 2;
      c := 1;
      while i <= pEnd do
      begin
        if c mod AOptions.Numbers.FracGrouping = 0 then
        begin
          Insert(AOptions.Numbers.FracGroupingChar, Result, i);
          Inc(i);
          Inc(pEnd);
        end;
        Inc(i);
        Inc(c);
      end;

    end;

  end;

end;


{ **************************************************************************** }
{ TASRComparer                                                                 }
{ **************************************************************************** }

type
  TStandardOrderASRComparer = class(TComparer<TASR>)
    function Compare(const Left, Right: TASR): Integer; override;
  end;
  TDescendingStandardOrderASRComparer = class(TComparer<TASR>)
    function Compare(const Left, Right: TASR): Integer; override;
  end;
  TAbsoluteValueASRComparer = class(TComparer<TASR>)
    function Compare(const Left, Right: TASR): Integer; override;
  end;
  TDescendingAbsoluteValueASRComparer = class(TComparer<TASR>)
    function Compare(const Left, Right: TASR): Integer; override;
  end;

function TStandardOrderASRComparer.Compare(const Left, Right: TASR): Integer;
begin
  Result := CompareValue(Left, Right);
end;

function TDescendingStandardOrderASRComparer.Compare(const Left, Right: TASR): Integer;
begin
  Result := -CompareValue(Left, Right);
end;

function TAbsoluteValueASRComparer.Compare(const Left, Right: TASR): Integer;
begin
  Result := CompareValue(Abs(Left), Abs(Right));
  if Result = 0 then
    Result := CompareValue(Left, Right);
end;

function TDescendingAbsoluteValueASRComparer.Compare(const Left, Right: TASR): Integer;
begin
  Result := CompareValue(Abs(Left), Abs(Right));
  if Result = 0 then
    Result := CompareValue(Left, Right);
  Result := -Result;
end;

class constructor TASRComparer.ClassCreate;
begin
  TASRComparer.StandardOrder := TStandardOrderASRComparer.Create;
  TASRComparer.StandardOrderDescending := TDescendingStandardOrderASRComparer.Create;
  TASRComparer.AbsoluteValue := TAbsoluteValueASRComparer.Create;
  TASRComparer.AbsoluteValueDescending := TDescendingAbsoluteValueASRComparer.Create;
end;


{ **************************************************************************** }
{ Elementary functions for real numbers                                        }
{ **************************************************************************** }

function pow(const a, b: TASR): TASR;
begin
  if (a = 0) and (b = 0) then
    raise EMathException.Create('Zero raised to the power of zero.'); // missed by Math.Power (which gladly returns 1...)
  Result := Math.Power(a, b);
end;

function intpow(const a, b: TASI): TASI;
var
  i: TASI;
begin
  if b < 0 then
    raise EMathException.Create('Integer power requires a non-negative exponent.');
  Result := 1;
  for i := 1 to b do
    Result := Result * a;
end;

function cbrt(const X: TASR): TASR; inline;
begin
  Result := Math.Power(X, 1/3);
end;

function frt(const X: TASR): TASR; inline;
begin
  Result := Math.Power(X, 1/4);
end;

function tanh(const X: TASR): TASR; inline;
var
  yp, ym: TASR;
begin
  yp := exp(x);
  ym := exp(-x);
  Result := (yp - ym) / (yp + ym);
end;

function coth(const X: TASR): TASR; inline;
var
  yp, ym: TASR;
begin
  yp := exp(x);
  ym := exp(-x);
  Result := (yp + ym) / (yp - ym);
end;

function sech(const X: TASR): TASR; inline;
begin
  {$IF sizeof(TASR) = 10}
    if Abs(X) > 11300 then
      Exit(0.0);
  {$ELSE}
    if Abs(X) > 700 then
      Exit(0.0);
  {$ENDIF}
  Result := 2 / (exp(X) + exp(-X));
end;

function csch(const X: TASR): TASR; inline;
begin
  {$IF sizeof(TASR) = 10}
    if Abs(X) > 11300 then
      Exit(0.0);
  {$ELSE}
    if Abs(X) > 700 then
      Exit(0.0);
  {$ENDIF}
  Result := 2 / (exp(X) - exp(-X));
end;

function arcsinh(const X: TASR): TASR; inline;
begin
  if X >= 0 then
    Result := Math.ArcSinh(X)
  else
    Result := -Math.ArcSinh(-X);
end;

function arccsch(const X: TASR): TASR; inline;
var
  y: TASR;
begin
  if X >= 0 then
  begin
    y := 1/x;
    Result := ln(y + sqrt(y*y + 1));
  end
  else
  begin
    y := 1/-x;
    Result := -ln(y + sqrt(y*y + 1));
  end;
end;

function sinc(const X: TASR): TASR; inline;
begin
  if IsZero(X) then
    Result := 1
  else
    Result := sin(x) / x;
end;


{ **************************************************************************** }
{ TASC: The AlgoSim complex number type                                        }
{ **************************************************************************** }

class operator TASC.Implicit(const r: TASR): TASC;
begin
  Result.Re := r;
  Result.Im := 0;
end;

class operator TASC.Positive(const z: TASC): TASC;
begin
  Result := z;
end;

function TASC.pstr: string;
begin
  Result := ComplexToStr(Self, False, DefaultFormatOptions);
end;

class operator TASC.Negative(const z: TASC): TASC;
begin
  Result.Re := -z.Re;
  Result.Im := -z.Im;
end;

class operator TASC.Add(const z1: TASC; const z2: TASC): TASC;
begin
  Result.Re := z1.Re + z2.Re;
  Result.Im := z1.Im + z2.Im;
end;

class operator TASC.Subtract(const z1: TASC; const z2: TASC): TASC;
begin
  Result.Re := z1.Re - z2.Re;
  Result.Im := z1.Im - z2.Im;
end;

class operator TASC.Multiply(const z1: TASC; const z2: TASC): TASC;
begin
  Result.Re := z1.Re * z2.Re - z1.Im * z2.Im;
  Result.Im := z1.Re * z2.Im + z1.Im * z2.Re;
end;

class operator TASC.Divide(const z1: TASC; const z2: TASC): TASC;
var
  denom: TASR;
begin
  denom := z2.Re * z2.Re + z2.Im * z2.Im;
  Result.Re := (z1.Re * z2.Re + z1.Im * z2.Im) / denom;
  Result.Im := (z1.Im * z2.Re - z1.Re * z2.Im) / denom;
end;

class operator TASC.Equal(const z1: TASC; const z2: TASC): Boolean;
begin
  Result := (z1.Re = z2.Re) and (z1.Im = z2.Im);
end;

class operator TASC.NotEqual(const z1: TASC; const z2: TASC): Boolean;
begin
  Result := not (z1 = z2);
end;

class operator TASC.Round(const z: TASC): TASC;
begin
  Result.Re := Round(z.Re);
  Result.Im := Round(z.Im);
end;

class operator TASC.Trunc(const z: TASC): TASC;
begin
  Result.Re := Trunc(z.Re);
  Result.Im := Trunc(z.Im);
end;

function TASC.Modulus: TASR;
begin
  Result := Hypot(Re, Im);
end;

function TASC.Argument: TASR;
begin
  Result := ArcTan2(Im, Re);
end;

function TASC.Conjugate: TASC;
begin
  Result.Re := Re;
  Result.Im := -Im;
end;

function TASC.Sqr: TASC;
begin
  Result.Re := System.Sqr(Re) - System.Sqr(Im);
  Result.Im := 2*Re*Im;
end;

function TASC.ModSqr: TASR;
begin
  Result := System.Sqr(Re) + System.Sqr(Im);
end;

function TASC.Inverse: TASC;
var
  h: TASR;
begin
  h := System.Sqr(Re) + System.Sqr(Im);
  Result.Re := Re/h;
  Result.Im := -Im/h;
end;

function TASC.IsReal: Boolean;
begin
  Result := IsZero(Im);
end;

function TASC.Defuzz(const Eps: Double): TASC;
begin

  if IsInteger(Re, Eps) then
    Result.Re := Round(Re)
  else
    Result.Re := Re;

  if IsInteger(Im, Eps) then
    Result.Im := Round(Im)
  else
    Result.Im := Im;

end;

function TASC.str: string;
begin
  Result := Format('(%.18g, %.18g)', [Re, Im]);
end;

function ASC(const Re, Im: TASR): TASC; inline;
begin
  Result.Re := Re;
  Result.Im := Im;
end;

function ASC_COUNT(const A, B: TASC): TASC;
begin
  Result := A + 1;
end;

function ASC_PLUS(const A, B: TASC): TASC;
begin
  Result := A + B;
end;

function ASC_TIMES(const A, B: TASC): TASC;
begin
  Result := A * B;
end;

function ComplexToStr(const z: TASC; ApproxEq: Boolean;
  const AOptions: TFormatOptions): string;
var
  Re0, Im0, Im1, ImN1: Boolean;
begin

  if ApproxEq then
  begin
    Re0 := IsZero(z.Re);
    Im0 := IsZero(z.Im);
    Im1 := IsZero(z.Im - 1);
    ImN1 := IsZero(z.Im + 1);
  end
  else
  begin
    Re0 := z.Re = 0;
    Im0 := z.Im = 0;
    Im1 := z.Im = 1;
    ImN1 := z.Im = -1;
  end;

  if Re0 and Im0 then
    Result := RealToStr(0, AOptions)
  else if Im0 then
    Result := RealToStr(z.Re, AOptions)
  else if Re0 then
    if Im1 then
      Result := 'i'
    else if ImN1 then
      Result := AOptions.Complex.MinusSign + 'i'
    else
      Result := RealToStr(z.Im, AOptions) + AOptions.Complex.ImaginarySuffix
  else
    if Im1 then
      Result := RealToStr(z.Re, AOptions) + AOptions.Complex.PlusStr + 'i'
    else if ImN1 then
      Result := RealToStr(z.Re, AOptions) + AOptions.Complex.MinusStr + 'i'
    else if z.Im > 0 then
      Result := RealToStr(z.Re, AOptions) + AOptions.Complex.PlusStr + RealToStr(z.Im, AOptions) + AOptions.Complex.ImaginarySuffix
    else
      Result := RealToStr(z.Re, AOptions) + AOptions.Complex.MinusStr + RealToStr(-z.Im, AOptions) + AOptions.Complex.ImaginarySuffix;

end;

function TryStringToComplex(AString: string; out Value: TASC;
  ASignRequired: Boolean = False): Boolean;
var
  num: TASR;
  part1, part2: TASC;
  len: Integer;
  i, p, p2, pp: Integer;
  signed, period, exp, neg, times, imag: Boolean;

  procedure SkipWhitespace;
  begin
    while (i <= len) and AString[i].IsWhiteSpace do Inc(i);
  end;

  procedure SkipTrailingWhitespace;
  var
    j: Integer;
  begin
    j := i;
    while (j <= len) and AString[j].IsWhiteSpace do Inc(j);
    if j > len then
    begin
      p2 := i;
      i := j;
    end;
  end;

  procedure SkipDigits;
  begin
    while (i <= len) and AString[i].IsDigit do Inc(i);
  end;

  function EOF: Boolean;
  begin
    Result := i > len;
  end;

  procedure SkipSign;
  begin
    if (i <= len) and inOpArray(AString[i], ['+', '-']) then Inc(i);
  end;

  procedure SkipSignEx;
  begin
    if i <= len then
      if AString[i] = '+' then
      begin
        signed := True;
        Inc(i);
      end
      else if AString[i] = '-' then
      begin
        signed := True;
        neg := not neg;
        Inc(i);
      end;
  end;

  procedure SkipPeriod;
  begin
    if (i <= len) and (AString[i] = '.') and not period then
    begin
      period := True;
      Inc(i);
    end;
  end;

  function sign: TASR;
  begin
    Result := IfThen(neg, -1, 1);
  end;

  function basis: TASC;
  begin
    if imag then
      Result := ImaginaryUnit
    else
      Result := 1;
  end;

  function TryDone: Boolean;
  var
    res: Boolean;
  begin
    if i > len then
    begin
      res := TryStrToFloat(Copy(AString, p, p2 - p), num, FS);
      TryStringToComplex := res;
      if res then Value := sign * num;
      Exit(True);
    end
    else
      Result := False;
  end;

  procedure SkipExp;
  begin
    if (i <= len) and (AString[i] = 'e') and not exp then
    begin
      exp := True;
      Inc(i);
    end;
  end;

  procedure SkipTimes;
  begin
    if (i <= len) and (AString[i] = '*') then
    begin
      times := True;
      Inc(i);
    end;
  end;

  procedure SkipImUnit;
  begin
    if (i <= len) and (AString[i] = 'i') and not imag then
    begin
      imag := True;
      Inc(i);
    end;
  end;

begin

  len := Length(AString);
  signed := False;
  period := False;
  exp := False;
  times := False;
  imag := False;
  neg := False;
  p2 := 128;

  for i := 1 to len do
    case AString[i] of
      MINUS_SIGN:
        AString[i] := '-';
      'I', 'j', 'J':
        AString[i] := 'i';
      DOT_OPERATOR:
        AString[i] := '*';
      'E':
        AString[i] := 'e';
    end;

  i := 1;
  SkipWhitespace;
  if EOF then Exit(False);
  SkipSignEx;
  if ASignRequired and not signed then Exit(False);
  SkipWhitespace;
  p := i;
  SkipPeriod;
  if TryDone then Exit;
  SkipDigits;
  SkipTrailingWhitespace;
  if TryDone then Exit;
  SkipPeriod;
  SkipTrailingWhitespace;
  if TryDone then Exit;
  SkipDigits;
  SkipTrailingWhitespace;
  if TryDone then Exit;
  SkipExp;
  if EOF then Exit(False);
  if exp then SkipSign;
  if EOF then Exit(False);
  pp := i;
  SkipDigits;
  if exp and (i = pp) then Exit(False);
  p2 := i;
  SkipWhitespace;
  if TryDone then Exit;
  SkipTimes;
  SkipWhitespace;
  if EOF then Exit(False);
  SkipImUnit;
  SkipWhitespace;

  if times and not imag then Exit(False);

  if i > len then
  begin
    Assert(imag);
    num := 1;
    Result := (p = p2) or TryStrToFloat(Copy(AString, p, p2 - p), num, FS);
    if Result then Value := sign * num * ImaginaryUnit;
    Exit;
  end;

  num := 1;
  if (imag and (p = p2)) or TryStrToFloat(Copy(AString, p, p2 - p), num, FS) then
  begin

    part1 := sign * num * basis;

    if i = 1 then Exit(False);

    if TryStringToComplex(Copy(AString, i), part2, True) then
    begin
      Value := part1 + part2;
      Exit(True);
    end;

  end;

  Result := False;

end;

function CSameValue(const z1, z2: TASC; const Epsilon: TASR = 0): Boolean; inline;
begin
  Result := SameValue(z1.Re, z2.Re, Epsilon) and SameValue(z1.Im, z2.Im, Epsilon);
end;

function CSameValueEx(const z1, z2: TASC; const Epsilon: TASR = 0): Boolean; inline;
begin
  Result := SameValueEx(z1.Re, z2.Re, Epsilon) and SameValueEx(z1.Im, z2.Im, Epsilon);
end;

function CIsZero(const z: TASC; const Epsilon: TASR): Boolean; overload; inline;
begin
  Result := IsZero(z.Re, Epsilon) and IsZero(z.Im, Epsilon);
end;

function IntegerPowerOfImaginaryUnit(const n: Integer): TASC;
const
  vals: array[0..3] of TASC = ((Re: 1; Im: 0), (Re: 0; Im: 1), (Re: -1; Im: 0), (Re: 0; Im: -1));
begin
  Result := vals[imod(n, Length(vals))];
end;

function SameValue2(const A, B: TASC): Boolean; overload;
begin
  Result := SameValue2(A.Re, B.Re) and SameValue2(A.Im, B.Im);
end;

function CompareValue(const A, B: TASC; Epsilon: Extended): TValueRelationship;
begin
  if CSameValue(A, B, Epsilon) then
    Result := EqualsValue
  else if (A.Re < B.Re) or ((A.Re = B.Re) and (A.Im < B.Im)) then
    Result := LessThanValue
  else
    Result := GreaterThanValue;
end;


{ **************************************************************************** }
{ TASCComparer                                                                 }
{ **************************************************************************** }

type
  TReImASCComparer = class(TComparer<TASC>)
    function Compare(const Left, Right: TASC): Integer; override;
  end;
  TDescendingReImASCComparer = class(TComparer<TASC>)
    function Compare(const Left, Right: TASC): Integer; override;
  end;
  TModulusASCComparer = class(TComparer<TASC>)
    function Compare(const Left, Right: TASC): Integer; override;
  end;
  TDescendingModulusASCComparer = class(TComparer<TASC>)
    function Compare(const Left, Right: TASC): Integer; override;
  end;
  TArgASCComparer = class(TComparer<TASC>)
    function Compare(const Left, Right: TASC): Integer; override;
  end;
  TDescendingArgASCComparer = class(TComparer<TASC>)
    function Compare(const Left, Right: TASC): Integer; override;
  end;
  TModulusArgumentASCComparer = class(TComparer<TASC>)
    function Compare(const Left, Right: TASC): Integer; override;
  end;
  TDescendingModulusArgumentASCComparer = class(TComparer<TASC>)
    function Compare(const Left, Right: TASC): Integer; override;
  end;

function TReImASCComparer.Compare(const Left, Right: TASC): Integer;
begin
  Result := CompareValue(Left.Re, Right.Re);
  if Result = 0 then
    Result := CompareValue(Left.Im, Right.Im);
end;

function TDescendingReImASCComparer.Compare(const Left, Right: TASC): Integer;
begin
  Result := CompareValue(Left.Re, Right.Re);
  if Result = 0 then
    Result := CompareValue(Left.Im, Right.Im);
  Result := -Result;
end;

function TModulusASCComparer.Compare(const Left, Right: TASC): Integer;
begin
  Result := CompareValue(Left.Modulus, Right.Modulus);
  if Result = 0 then
    Result := CompareValue(Left.Re, Right.Re);
  if Result = 0 then
    Result := CompareValue(Left.Im, Right.Im);
end;

function TDescendingModulusASCComparer.Compare(const Left, Right: TASC): Integer;
begin
  Result := CompareValue(Left.Modulus, Right.Modulus);
  if Result = 0 then
    Result := CompareValue(Left.Re, Right.Re);
  if Result = 0 then
    Result := CompareValue(Left.Im, Right.Im);
  Result := -Result;
end;

function TArgASCComparer.Compare(const Left, Right: TASC): Integer;
var
  LA, RA: TASR;
begin
  LA := Left.Argument;
  if SameValue(LA, -Pi) then
    LA := Pi;
  RA := Right.Argument;
  if SameValue(RA, -Pi) then
    RA := Pi;
  Result := CompareValue(LA, RA);
  if Result = 0 then
    Result := CompareValue(Left.Modulus, Right.Modulus);
end;

function TDescendingArgASCComparer.Compare(const Left, Right: TASC): Integer;
var
  LA, RA: TASR;
begin
  LA := Left.Argument;
  if SameValue(LA, -Pi) then
    LA := Pi;
  RA := Right.Argument;
  if SameValue(RA, -Pi) then
    RA := Pi;
  Result := CompareValue(LA, RA);
  if Result = 0 then
    Result := CompareValue(Left.Modulus, Right.Modulus);
  Result := -Result;
end;

function TModulusArgumentASCComparer.Compare(const Left, Right: TASC): Integer;
var
  LA, RA: TASR;
begin
  Result := CompareValue(Left.Modulus, Right.Modulus);
  if Result = 0 then
  begin
    LA := Left.Argument;
    if SameValue(LA, -Pi) then
      LA := Pi;
    RA := Right.Argument;
    if SameValue(RA, -Pi) then
      RA := Pi;
    Result := CompareValue(LA, RA);
  end;
end;

function TDescendingModulusArgumentASCComparer.Compare(const Left, Right: TASC): Integer;
var
  LA, RA: TASR;
begin
  Result := CompareValue(Left.Modulus, Right.Modulus);
  if Result = 0 then
  begin
    LA := Left.Argument;
    if SameValue(LA, -Pi) then
      LA := Pi;
    RA := Right.Argument;
    if SameValue(RA, -Pi) then
      RA := Pi;
    Result := CompareValue(LA, RA);
  end;
  Result := -Result;
end;

class constructor TASCComparer.ClassCreate;
begin
  TASCComparer.ReIm := TReImASCComparer.Create;
  TASCComparer.ReImDescending := TDescendingReImASCComparer.Create;
  TASCComparer.Modulus := TModulusASCComparer.Create;
  TASCComparer.ModulusDescending := TDescendingModulusASCComparer.Create;
  TASCComparer.Argument := TArgASCComparer.Create;
  TASCComparer.ArgumentDescending := TDescendingArgASCComparer.Create;
  TASCComparer.ModulusArgument := TModulusArgumentASCComparer.Create;
  TASCComparer.ModulusArgumentDescending := TDescendingModulusArgumentASCComparer.Create;
end;


{ **************************************************************************** }
{ Elementary functions for complex numbers                                     }
{ **************************************************************************** }

function csign(const z: TASC): TASC; inline;
begin
  if CIsZero(z) then
    Result := 0
  else
    Result := z / z.Modulus;
end;

function cexp(const z: TASC): TASC; inline;
var
  e, s, c: TASR;
begin
  e := exp(z.Re);
  SinCos(z.Im, s, c);
  Result.Re := e * c;
  Result.Im := e * s;
end;

function cln(const z: TASC): TASC; inline;
begin
  Result.Re := ln(z.Modulus);
  Result.Im := z.Argument;
end;

function clog(const z: TASC): TASC; inline;
begin
  Result := cln(z) * InvLn10;
end;

function cpow(const z, w: TASC): TASC;
var
  n: Integer;
  i: Integer;
begin

  // cpow(z, w) is defined for all z, w \in \C with z \ne 0 or w.Re > 0.

  // Warning! It is NOT true that z, w \in \R => cpow(z, w) = pow(z.Re, w.Re)
  // for all z and w for which cpow(z, w) is defined; a counterexample is
  // z = -2.3, w = 2.1.

  // Handle case z = 0
  if z = 0 then
    if w.Re > 0 then
      Exit(0)
    else
      raise EMathException.Create('Zero raised to a complex number with non-positive real part.');

  // Handle case z \ne 0: Result must "equal" cexp(w*cln(z));
  if IsZero(w.Im) and IsZero(frac(w.Re)) and (abs(w.Re) < 13) then
  begin
    // improve z^n where n \in [-12, 12] \cap \Z
    n := round(w.Re);
    if n > 0 then
    begin
      Result := z;
      for i := 2 to n do
        Result := Result * z;
      Exit;
    end
    else if n < 0 then
    begin
      Result := z;
      for i := 2 to -n do
        Result := Result * z;
      Exit(1/Result);
    end
    else if (n = 0) and (z <> 0) then
      Exit(1)
    else {0^0}
      raise EMathException.Create('Zero raised to the power of zero.');
  end

  else if ((z.Im = 0) and (w.Im = 0)) and
    ((z.Re > 0) or ((z.Re = 0) and (w.Re > 0)) or ((z.Re < 0) and (frac(w.Re) = 0))) then
    // improve real case
    Exit(pow(z.Re, w.Re))

  else if (z.Re = 0) and (w.Im = 0) and (frac(w.Re) = 0) then // notice that z.Im \ne 0
    // improve (bi)^n (notice that b \ne 0)
    Exit(IntPower(z.Im, round(w.Re)) * IntegerPowerOfImaginaryUnit(round(w.Re)));

  Result := cexp(w * cln(z));

end;

function csqrt(const z: TASC): TASC; inline;
begin
  if (z.Im = 0) and (z.Re >= 0) then
    Exit(sqrt(z.Re));

  if (z.Im = 0) and (z.Re < 0) then
    Exit(ASC(0, sqrt(-z.Re)));

  Result := cexp(cln(z)/2);
end;

function csin(const z: TASC): TASC; inline;
begin
{$IFDEF REALCHECK}
  if z.Im = 0 then
    Exit(sin(z.Re));
{$ENDIF}

  Result := (cexp(ImaginaryUnit*z) - cexp(NegativeImaginaryUnit*z)) / (2*ImaginaryUnit);
end;

function ccos(const z: TASC): TASC; inline;
begin
{$IFDEF REALCHECK}
  if z.Im = 0 then
    Exit(cos(z.Re));
{$ENDIF}

  Result := (cexp(ImaginaryUnit*z) + cexp(NegativeImaginaryUnit*z)) / 2;
end;

function ctan(const z: TASC): TASC; inline;
var
  w: TASC;
begin
{$IFDEF REALCHECK}
  if z.Im = 0 then
    Exit(tan(z.Re));
{$ENDIF}

  w := cexp(2*ImaginaryUnit*z);
  Result := NegativeImaginaryUnit * (w - 1)/(w + 1);
end;

function ccot(const z: TASC): TASC; inline;
var
  w: TASC;
begin
{$IFDEF REALCHECK}
  if z.Im = 0 then
    Exit(cot(z.Re));
{$ENDIF}

  w := cexp(2*ImaginaryUnit*z);
  Result := ImaginaryUnit * (w + 1)/(w - 1);
end;

function csec(const z: TASC): TASC; inline;
begin
{$IFDEF REALCHECK}
  if z.Im = 0 then
    Exit(sec(z.Re));
{$ENDIF}

  Result := 2 / (cexp(ImaginaryUnit*z) + cexp(NegativeImaginaryUnit*z));
end;

function ccsc(const z: TASC): TASC; inline;
begin
{$IFDEF REALCHECK}
  if z.Im = 0 then
    Exit(csc(z.Re));
{$ENDIF}

  Result := (2*ImaginaryUnit) / (cexp(ImaginaryUnit*z) - cexp(NegativeImaginaryUnit*z));
end;

function carcsin(const z: TASC): TASC; inline;
begin
{$IFDEF REALCHECK}
  if (z.Im = 0) and InRange(z.Re, -1, 1) then
    Exit(arcsin(z.Re));
{$ENDIF}

  Result := NegativeImaginaryUnit * cln(ImaginaryUnit * z + csqrt(1 - z.Sqr));   // Check
end;

function carccos(const z: TASC): TASC; inline;
begin
{$IFDEF REALCHECK}
  if (z.Im = 0) and InRange(z.Re, -1, 1) then
    Exit(arccos(z.Re));
{$ENDIF}

  Result := PiDiv2 + ImaginaryUnit * cln(ImaginaryUnit * z + csqrt(1 - z.Sqr));  // Check
end;

function carctan(const z: TASC): TASC; inline;
var
  w: TASC;
begin
{$IFDEF REALCHECK}
  if z.Im = 0 then
    Exit(arctan(z.Re));
{$ENDIF}

  w := ImaginaryUnit * z;
  Result := ImaginaryUnitDiv2 * (cln(1 - w) - cln(1 + w));                       // Check
end;

function carccot(const z: TASC): TASC; inline;
var
  w: TASC;
begin
{$IFDEF REALCHECK}
  if z.Im = 0 then
    Exit(arccot(z.Re));
{$ENDIF}

  if CIsZero(z) then
    Result := PiDiv2
  else
  begin
    w := ImaginaryUnit / z;
    Result := ImaginaryUnitDiv2 * (cln(1 - w) - cln(1 + w))                      // Check
  end;
end;

function carcsec(const z: TASC): TASC; inline;
begin
{$IFDEF REALCHECK}
  if (z.Im = 0) and (abs(z.Re) >= 1) then
    Exit(arcsec(z.Re));
{$ENDIF}

  Result := PiDiv2 + ImaginaryUnit * cln(ImaginaryUnit / z + csqrt(1 - z.Inverse.Sqr)); // Check
end;

function carccsc(const z: TASC): TASC; inline;
begin
{$IFDEF REALCHECK}
  if (z.Im = 0) and (abs(z.Re) >= 1) then
    Exit(arccsc(z.Re));
{$ENDIF}

  Result := NegativeImaginaryUnit * cln(ImaginaryUnit / z + csqrt(1 - z.Inverse.Sqr)); // Check
end;

function csinh(const z: TASC): TASC; inline;
begin
{$IFDEF REALCHECK}
  if z.Im = 0 then
    Exit(sinh(z.Re));
{$ENDIF}

  Result := (cexp(z) - cexp(-z)) / 2;
end;

function ccosh(const z: TASC): TASC; inline;
begin
{$IFDEF REALCHECK}
  if z.Im = 0 then
    Exit(cosh(z.Re));
{$ENDIF}

  Result := (cexp(z) + cexp(-z)) / 2;
end;

function ctanh(const z: TASC): TASC; inline;
var
  w: TASC;
begin
{$IFDEF REALCHECK}
  if z.Im = 0 then
    Exit(tanh(z.Re));
{$ENDIF}

  w := cexp(2*z);
  Result := (w - 1)/(w + 1);
end;

function ccoth(const z: TASC): TASC; inline;
var
  w: TASC;
begin
{$IFDEF REALCHECK}
  if z.Im = 0 then
    Exit(coth(z.Re));
{$ENDIF}

  w := cexp(2*z);
  Result := (w + 1)/(w - 1);
end;

function csech(const z: TASC): TASC; inline;
begin
{$IFDEF REALCHECK}
  if z.Im = 0 then
    Exit(sech(z.Re));
{$ENDIF}

  Result := 2 / (cexp(z) + cexp(-z));
end;

function ccsch(const z: TASC): TASC; inline;
begin
{$IFDEF REALCHECK}
  if z.Im = 0 then
    Exit(csch(z.Re));
{$ENDIF}

  Result := 2 / (cexp(z) - cexp(-z));
end;

function carcsinh(const z: TASC): TASC; inline;
begin
{$IFDEF REALCHECK}
  if z.Im = 0 then
    Exit(arcsinh(z.Re));
{$ENDIF}

  Result := cln(z + csqrt(1 + z.Sqr));                                           // Check
end;

function carccosh(const z: TASC): TASC; inline;
begin
{$IFDEF REALCHECK}
  if (z.Im = 0) and (z.Re >= 1) then
    Exit(arccosh(z.Re));
{$ENDIF}

  Result := cln(z + csqrt(z + 1) * csqrt(z - 1));                                // Check
end;

function carctanh(const z: TASC): TASC; inline;
begin
{$IFDEF REALCHECK}
  if (z.Im = 0) and (z.Re > -1) and (z.Re < 1) then
    Exit(arctanh(z.Re));
{$ENDIF}

  Result := (cln(1 + z) - cln(1 - z)) / 2;                                       // Check
end;

function carccoth(const z: TASC): TASC; inline;
var
  w: TASC;
begin
{$IFDEF REALCHECK}
  if (z.Im = 0) and ((z.Re < -1) or (z.Re > 1)) then
    Exit(arccoth(z.Re));
{$ENDIF}

  if CIsZero(z) then
    Result := PiDiv2 * ImaginaryUnit
  else
  begin
    w := z.Inverse;
    Result := (cln(1 + w) - cln(1 - w)) / 2;                                     // Check
  end;
end;

function carcsech(const z: TASC): TASC; inline;
var
  w: TASC;
begin
{$IFDEF REALCHECK}
  if (z.Im = 0) and (z.Re > 0) and (z.Re <= 1) then
    Exit(arcsech(z.Re));
{$ENDIF}

  w := z.Inverse;
  Result := cln(w + csqrt(w + 1) * csqrt(w - 1));                                // Check
end;

function carccsch(const z: TASC): TASC; inline;
var
  w: TASC;
begin
{$IFDEF REALCHECK}
  if z.Im = 0 then
    Exit(arccsch(z.Re));
{$ENDIF}

  w := z.Inverse;
  Result := cln(w + csqrt(1 + w.Sqr));                                           // Check
end;

function csinc(const z: TASC): TASC; inline;
begin
{$IFDEF REALCHECK}
  if z.Im = 0 then
    Exit(sinc(z.Re));
{$ENDIF}

  if CIsZero(z) then
    Result := 1
  else
    Result := csin(z) / z;
end;


{ **************************************************************************** }
{ Integer functions                                                            }
{ **************************************************************************** }

function CollapseWithMultiplicity(const ANumbers: array of TASI): TArray<TIntWithMultiplicity>;
var
  ActualLength: Integer;
  i, c: Integer;
  PrevNumber: TASI;

  procedure New(ANumber: TASI);
  begin
    PrevNumber := ANumber;
    c := 1;
  end;

  procedure Add;
  begin
    Result[ActualLength].Factor := PrevNumber;
    Result[ActualLength].Multiplicity := c;
    Inc(ActualLength);
  end;

begin
  SetLength(Result, Length(ANumbers));
  ActualLength := 0;
  for i := 0 to High(ANumbers) do
  begin
    if i = 0 then
      New(ANumbers[i])
    else if ANumbers[i] <> PrevNumber then
    begin
      Add;
      New(ANumbers[i]);
    end
    else
      Inc(c);
  end;
  if Length(ANumbers) > 0 then
    Add;
  SetLength(Result, ActualLength);
end;

function GetDigit(N: TASI; Index: Integer): Integer;
begin
  if Index < 0 then
    Exit(0); // all digits after the decimal separator are 0 in an integer
  while (Index > 0) and (N <> 0) do
  begin
    N := N div 10;
    Dec(Index);
  end;
  Result := Abs(N mod 10);
end;

function GetDigits(N: TASI): TArray<Integer>;
begin
  if N = 0 then
    Result := [0]
  else
    while N <> 0 do
    begin
      TArrBuilder<Integer>.Add(Result, Abs(N mod 10));
      N := N div 10;
    end;
end;

procedure _RatDigits(const R: TRationalNumber; Index: Integer;
  const Mode: TRatDigitMode; AFullOutput, ARound: Boolean; out Digit: Integer;
  out Digits: TArray<Integer>; AFirstDigitPos, AFirstSigDigitPos: PInteger);

  function makenum(source: TArray<Integer>; start, len: Integer): TASI;
  var
    i: Integer;
    j: TASI;
  begin
    Result := 0;
    j := 1;
    for i := start to start + len - 1 do
    begin
      if i >= 0 then
        Inc(Result, source[i] * j);
      j := 10 * j;
    end;
  end;

var
  LFirstDigitPos: Integer;
  Numerator, Denominator: TArray<Integer>;
  Pos: Integer;
  CurNumerator, Quotient, Remainder: TASI;
  Sig: Integer;
  Rounding: Boolean;
  EffectRound: Boolean;
  i: Integer;

begin

  // Preparation

  Rounding := False;
  EffectRound := False;

  Numerator := GetDigits(R.Numerator);
  Denominator := GetDigits(R.Denominator);

  if Length(Denominator) >= 18 then
    raise EMathException.Create('Denominator too large.');

  Pos := Length(Numerator) - Length(Denominator);
  CurNumerator := makenum(Numerator, Pos, Length(Denominator));
  LFirstDigitPos := LFirstDigitPos.MaxValue;
  if Mode <> rdmSingle then
  begin
    if Assigned(AFirstDigitPos) then
      AFirstDigitPos^ := AFirstDigitPos^.MaxValue;
    if Assigned(AFirstSigDigitPos) then
      AFirstSigDigitPos^ := AFirstSigDigitPos^.MaxValue;
  end;

  case Mode of
    rdmSingle:
      begin
        Digit := 0;
        if (R.Numerator = 0) or (Index > Pos) then
          Exit;
      end;
    rdmFractional:
      begin
        if R.Numerator = 0 then
        begin
          SetLength(Digits, Index + 1);
          if Assigned(AFirstDigitPos) then
            AFirstDigitPos^ := 0;
          Exit;
        end;
        if Pos < 0 then // initial zeros 0.00...
        begin
          SetLength(Digits, Min(-Pos, 1 + Index));
          if Assigned(AFirstDigitPos) then
            AFirstDigitPos^ := 0;
          LFirstDigitPos := 0;
          if Length(Digits) - 1 >= Index then
          begin
            if ARound and (-Pos = Index + 1) then
              Rounding := True
            else
              Exit;
          end;
        end;
      end;
    rdmSignificant:
      begin
        if R.Numerator = 0 then
        begin
          SetLength(Digits, Index);
          if Assigned(AFirstDigitPos) then
            AFirstDigitPos^ := 0;
          Exit;
        end;
      end;
    rdmFixedSignificant:
      begin
        if R.Numerator = 0 then
        begin
          SetLength(Digits, Index);
          if Assigned(AFirstDigitPos) then
            AFirstDigitPos^ := 0;
          Exit;
        end;
        if Pos < 0 then // initial zeros 0.00...
        begin
          SetLength(Digits, -Pos);
          if Assigned(AFirstDigitPos) then
            AFirstDigitPos^ := 0;
          LFirstDigitPos := 0;
        end;
      end;
  else
    raise Exception.CreateFmt('Unsupported rational digit extraction mode: %d', [Ord(Mode)]);
  end;

  // Divmod loop

  Sig := 0;
  while True do
  begin

    Quotient := CurNumerator div R.Denominator;
    Remainder := CurNumerator mod R.Denominator;

    case Mode of
      rdmSingle:
        begin
          if Pos = Index then
          begin
            Digit := Quotient;
            Exit;
          end;
          if (Pos < 0) and (Remainder = 0) then
            Exit;
        end;
      rdmFractional:
        begin

          if Rounding then
          begin
            if Quotient >= 5 then
            begin
              EffectRound := True;
              if Assigned(AFirstSigDigitPos) and (AFirstSigDigitPos^ = AFirstSigDigitPos^.MaxValue) then
                AFirstSigDigitPos^ := Pos;
            end;
            Break;
          end;

          if (Pos <= 0) or (Length(Digits) > 0) or (Quotient <> 0) then
          begin
            if Assigned(AFirstDigitPos) then
              if AFirstDigitPos^ = AFirstDigitPos^.MaxValue then
                AFirstDigitPos^ := Pos;
            if LFirstDigitPos = LFirstDigitPos.MaxValue then
              LFirstDigitPos := Pos;
            TArrBuilder<Integer>.Add(Digits, Quotient);
            if (Quotient <> 0) or (Sig > 0) then
            begin
              if (Sig = 0) and Assigned(AFirstSigDigitPos) then
                AFirstSigDigitPos^ := Pos;
              Inc(Sig);
            end;
          end;

          if not AFullOutput and (Pos <= 0) and (Remainder = 0) then
            Break;

          if Pos <= -Index then
          begin
            if ARound then
              Rounding := True
            else
              Break;
          end;

        end;
      rdmSignificant, rdmFixedSignificant:
        begin

          if Rounding then
          begin
            if Quotient >= 5 then
              EffectRound := True;
            Break;
          end;

          if (Length(Digits) > 0) or (Quotient <> 0) or (Pos <= 0) and (Mode = rdmFixedSignificant) then
          begin
            if Assigned(AFirstDigitPos) then
              if AFirstDigitPos^ = AFirstDigitPos^.MaxValue then
                AFirstDigitPos^ := Pos;
            if LFirstDigitPos = LFirstDigitPos.MaxValue then
              LFirstDigitPos := Pos;
            TArrBuilder<Integer>.Add(Digits, Quotient);
            if (Quotient <> 0) or (Sig > 0) then
            begin
              if (Sig = 0) and Assigned(AFirstSigDigitPos) then
                AFirstSigDigitPos^ := Pos;
              Inc(Sig);
            end;
          end;

          if not AFullOutput and (Pos <= 0) and (Remainder = 0) then
            Break;

          if Sig >= Index then
          begin
            if ARound then
              Rounding := True
            else
              Break;
          end;

        end;
    else
      raise Exception.CreateFmt('Unsupported rational digit extraction mode: %d', [Ord(Mode)]);
    end;

    CurNumerator := 10 * Remainder;
    if Pos > 0 then
      Inc(CurNumerator, Numerator[Pos - 1]);
    Dec(Pos);

  end;

  // Rounding

  if EffectRound then
  begin
    for i := High(Digits) downto 0 do
      if Digits[i] <> 9 then
      begin
        Inc(Digits[i]);
        Break;
      end
      else
      begin
        Digits[i] := 0;
        if i = 0 then
        begin
          Insert([1], Digits, 0);
          if Assigned(AFirstDigitPos) and (AFirstDigitPos^ <> AFirstDigitPos^.MaxValue) then
            Inc(AFirstDigitPos^);
          if LFirstDigitPos <> LFirstDigitPos.MaxValue then
            Inc(LFirstDigitPos);
          if Assigned(AFirstSigDigitPos) and (AFirstSigDigitPos^ <> AFirstSigDigitPos^.MaxValue) then
            Inc(AFirstSigDigitPos^);
          if Mode in [rdmSignificant, rdmFixedSignificant] then
            SetLength(Digits, Pred(Length(Digits)));
          Break;
        end;
      end;
  end;

  // Removal of trailing zeros

  if not AFullOutput then
  begin
    i := High(Digits);
    while (i > 0) and (Digits[i] = 0) and ((i > LFirstDigitPos) or (Mode <> rdmFixedSignificant)) do
      Dec(i);
    SetLength(Digits, i + 1);
  end;

end;

function GetDigit(const R: TRationalNumber; Index: Integer): Integer; overload;
var
  dummy: TArray<Integer>;
begin
  _RatDigits(R, Index, rdmSingle, False, False, Result, dummy, nil, nil);
end;

function GetDigits(const R: TRationalNumber; Limit: Integer;
  ALimitKind: TRatDigitMode; AFullOutput, ARound: Boolean;
  AFirstDigitPos, AFirstSigDigitPos: PInteger): TArray<Integer>; overload;
var
  dummy: Integer;
begin
  _RatDigits(R, Limit, ALimitKind, AFullOutput, ARound, dummy, Result,
    AFirstDigitPos, AFirstSigDigitPos);
end;

function GetDigits(const R: TRationalNumber; Limit: Integer;
  ALimitKind: TRatDigitMode; AFullOutput, ARound: Boolean;
  out AFracDigits: TArray<Integer>): TArray<Integer>; overload;
var
  AIntDigits: TArray<Integer> absolute Result;
  LDigits: TArray<Integer>;
  LFirstDigitPos: Integer;
begin
  LDigits := GetDigits(R, Limit, ALimitKind, AFullOutput, ARound, @LFirstDigitPos, nil);
  if LFirstDigitPos >= 0 then
    AIntDigits := Copy(LDigits, 0, LFirstDigitPos + 1)
  else
    AIntDigits := [0];
  if LFirstDigitPos < 0 then
    SetLength(AFracDigits, -LFirstDigitPos - 1);
  TReverser<Integer>.Reverse(AIntDigits);
  AFracDigits := AFracDigits + Copy(LDigits, LFirstDigitPos + 1);
end;

function GetDigit(X: TASR; Index: Integer): Integer; overload;

  procedure ErrPrec;
  begin
    raise EMathException.Create('Cannot extract required digit from floating-point number due to insufficient precision.');
  end;

var
  IndexHigh: Integer;
  IntVal: Int64;

const
  PRECISION_DIGITS = 15;

begin
  X := Abs(X);
  if X = 0 then Exit(0);
  IndexHigh := Floor(Log10(X));
  if Index > IndexHigh then
    Exit(0);
  if IndexHigh - Index + 1 > PRECISION_DIGITS then
    ErrPrec;
  // Now IndexHigh - PRECISION_DIGITS + 1 <= Index <= IndexHigh
  IntVal := Round(X * Math.IntPower(10, PRECISION_DIGITS - IndexHigh - 1));
  Result := GetDigit(IntVal, PRECISION_DIGITS - 1 + (Index - IndexHigh));
end;

function IsInteger(const X: TASR; const Epsilon: Extended = 0): Boolean; inline;
begin
  Result := InRange(X, TASI.MinValue + 1, TASI.MaxValue - 1) and SameValue(X, Round(X), Epsilon);
end;

function IsIntegerEx(const X: TASR; const Epsilon: Extended = 0): Boolean; inline;
begin
  Result := InRange(X, TASI.MinValue + 1, TASI.MaxValue - 1) and SameValueEx(X, Round(X), Epsilon);
end;

function IsInteger32(const X: TASR; const Epsilon: Extended = 0): Boolean; inline;
begin
  Result := InRange(X, Int32.MinValue + 1, Int32.MaxValue - 1) and SameValue(X, Round(X), Epsilon);
end;

function IsInteger32Ex(const X: TASR; const Epsilon: Extended = 0): Boolean; inline;
begin
  Result := InRange(X, Int32.MinValue + 1, Int32.MaxValue - 1) and SameValueEx(X, Round(X), Epsilon);
end;

function IsInteger64(const X: TASR; const Epsilon: Extended = 0): Boolean; inline;
begin
  Result := InRange(X, Int64.MinValue + 1, Int64.MaxValue - 1) and SameValue(X, Round(X), Epsilon);
end;

function IsInteger64Ex(const X: TASR; const Epsilon: Extended = 0): Boolean; inline;
begin
  Result := InRange(X, Int64.MinValue + 1, Int64.MaxValue - 1) and SameValueEx(X, Round(X), Epsilon);
end;

function _fact32(const N: Integer): Integer;
var
  i: Integer;
begin
  if N < 0 then
    raise EMathException.Create('Factorial of a negative number.');
  if N > 12 then
    raise EIntOverflow.Create('Integer overflow when computing 32-bit integer factorial.');
  Result := 1;
  for i := 2 to N do
    Result := Result * i;
end;

function _fact64(const N: Integer): TASI;
var
  i: Integer;
begin
  if N < 0 then
    raise EMathException.Create('Factorial of a negative number.');
  if N > 20 then
    raise EIntOverflow.Create('Integer overflow when computing 64-bit integer factorial.');
  Result := 1;
  for i := 2 to N do
    Result := Result * i;
end;

function _factf(const N: Integer): TASR;
var
  i: Integer;
begin
  if N < 0 then
    raise EMathException.Create('Factorial of a negative number.');
  Result := 1;
  for i := 2 to N do
    Result := Result * i;
end;

function factorial(const N: Integer): TASR;
var
  i: Integer;
begin
  if N < 0 then
    raise EMathException.Create('Factorial of a negative number.');
  if N <= High(factorials) then
    Exit(factorials[N]);
  Result := factorials[High(factorials)];
  for i := High(factorials) + 1 to N do
    Result := Result * i;
end;

function combinations(n, k: Integer): TASR;
var
  i: Integer;
begin

  if not ((k >= 0) and (n >= k)) then
    raise EMathException.Create('Binomial coefficient C(n, k) only defined for integers n and k satisfying 0 ≤ k ≤ n.');

  if k > n - k then
    k := n - k;

  Result := 1.0;
  for i := 0 to k - 1 do
    Result := Result * (n - i) / (i + 1);

end;

function intcombinations(n, k: Integer): TASI;
var
  i: Integer;
begin

  if not ((k >= 0) and (n >= k)) then
    raise EMathException.Create('Binomial coefficient C(n, k) only defined for integers n and k satisfying 0 ≤ k ≤ n.');

  if k > n - k then
    k := n - k;

  Result := 1;

  for i := 1 to k do
  begin
    if Result div i > Result.MaxValue div n then
      Exit(0);
    Result := (Result div i) * n + ((Result mod i) * n) div i;
    Dec(n);
  end;

end;

function binomial(const n, k: Integer): TASR; inline;
begin
  Result := combinations(n, k);
end;

function permutations(n, k: Integer): TASR;
var
  i: Integer;
begin

  if not ((k >= 0) and (n >= k)) then
    raise EMathException.Create('Binomial coefficient C(n, k) only defined for integers n and k satisfying 0 ≤ k ≤ n.');

  Result := 1.0;
  for i := n - k + 1 to n do
    Result := Result * i;

end;

function intpermutations(n, k: Integer): TASI;
var
  i: Integer;
begin

  if not ((k >= 0) and (n >= k)) then
    raise EMathException.Create('Binomial coefficient C(n, k) only defined for integers n and k satisfying 0 ≤ k ≤ n.');

  Result := 1;
  for i := n - k + 1 to n do
    if Result < Result.MaxValue div i then
      Result := Result * i
    else
      Exit(0);

end;

function lcm(const A, B: TASI): TASI; inline;
begin
  if (a = 0) or (b = 0) then
    Result := 0
  else
    Result := Abs((A div gcd(A, B)) * B);
end;

function lcm(const A, B: UInt64): UInt64; inline;
begin
  if (a = 0) or (b = 0) then
    Result := 0
  else
    Result := (A div gcd(A, B)) * B;
end;

function TryLCM(const A, B: TASI; var LCM: TASI): Boolean;
var
  tmp: TASI;
begin
  if (a = 0) or (b = 0) then
  begin
    Result := True;
    LCM := 0;
  end
  else
  begin
    tmp := A div gcd(A, B);
    Result := TInt64Guard.CanMul(tmp, B);
    if Result then
      LCM := tmp * B;
  end;
end;

function lcm(const Values: array of TASI): TASI;
var
  i: Integer;
begin
  if Length(Values) = 0 then
    raise EMathException.Create('Cannot compute the LCM of an empty list.');
  Result := Abs(Values[0]);
  for i := 1 to High(Values) do
    Result := lcm(Result, Values[i]);
  // Unlike the GCD, the LCM might be greater than the arguments, so we need to check for overflow.
  for i := 0 to High(Values) do
    if (Values[i] <> 0) and (Result mod Values[i] <> 0) then
      raise Exception.Create('LCM too large for the integer type.');
end;

function gcd(const A, B: TASI): TASI;
begin
  if B = 0 then
    Result := Abs(A)
  else
    Result := gcd(B, A mod B);
end;

function gcd(const A, B: UInt64): UInt64;
begin
  if B = 0 then
    Result := A
  else
    Result := gcd(B, A mod B);
end;

function gcd(const Values: array of TASI): TASI;
var
  i: Integer;
begin
  if Length(Values) = 0 then
    raise EMathException.Create('Cannot compute the GCD of an empty list.');
  Result := Abs(Values[0]);
  for i := 1 to High(Values) do
    Result := gcd(Result, Values[i]);
end;

function coprime(const A, B: TASI): Boolean; inline;
begin
  Result := gcd(A, B) = 1;
end;

function NaiveTotient(const N: Integer): Integer;
var
  i: Integer;
begin
  if n <= 0 then
    raise EMathException.Create('Totient only defined for positive integers.');
  Result := 1;
  for i := 2 to N - 1 do
    if coprime(i, N) then
      Inc(Result);
end;

function totient(const N: Integer): Integer;
var
  prevfactor, factor: TASI;
  res: Double;
begin
  if n <= 0 then
    raise EMathException.Create('Totient only defined for positive integers.');
  res := n;
  prevfactor := 1;
  for factor in PrimeFactors(N) do
  begin
    if factor <> prevfactor then
      res := res * (1 - 1 / factor);
    prevfactor := factor;
  end;
  Result := Round(res);
  Assert(IsIntegerEx(res));
end;

function cototient(const N: Integer): Integer; inline;
begin
  Result := N - totient(N);
end;

var
  _IsPrime: TBits;
  _Primes: TList<Integer>;
  _MöbiusCache: array of Int8;
  _MertensCache: TList<Integer>;

const
  PRIMES_ALLOC_BY = 65536;
  MAX_ISPRIME_INDEX = 1000000000;
  MAX_ISPRIME_INDEX_SQUARE = TASI(MAX_ISPRIME_INDEX) * MAX_ISPRIME_INDEX;
  MAX_PRIME = 999999937;
  INDEX_OF_MAX_PRIME = 50847534;
  INVALID_MÖBIUS_VALUE = 2;

function ExpandPrimeCache(N: Integer): Boolean;
var
  i, j: Integer;
begin

  if Assigned(_IsPrime) and (_IsPrime.Size >= N + 1) then
    Exit(False);

  N := EnsureRange(Round(1.25*N), 1000, MAX_ISPRIME_INDEX);

  if Assigned(_IsPrime) and (_IsPrime.Size >= N + 1) then
    Exit(False);

  Result := True;

  FreeAndNil(_IsPrime);
  FreeAndNil(_Primes);

  _IsPrime := TBits.Create;
  _Primes := TList<Integer>.Create;
  try

    _IsPrime.Size := N + 1;
    _IsPrime[0] := False;
    _IsPrime[1] := False;
    for i := 2 to N do
      _IsPrime[i] := True;

    for i := 2 to Trunc(Sqrt(N)) do
      if _IsPrime[i] then
      begin
        j := Sqr(i);
        while j <= N do
        begin
          _IsPrime[j] := False;
          Inc(j, i);
        end;
      end;

    for i := 0 to _IsPrime.Size - 1 do
      if _IsPrime[i] then
        _Primes.Add(i);

  except
    FreeAndNil(_Primes);
    FreeAndNil(_IsPrime);
    raise;
  end;

end;

procedure ClearPrimeCache;
begin
  FreeAndNil(_Primes);
  FreeAndNil(_IsPrime);
end;

function GetPrimeCacheMax: Integer;
begin
  if _IsPrime = nil then
    Result := -1
  else
    Result := _IsPrime.Size - 1;
end;

function GetPrimeCacheSizeBytes: Integer;
begin

  Result := 0;

  if Assigned(_IsPrime) then
    Inc(Result, Ceil(_IsPrime.Size / 8));

  if Assigned(_Primes) then
    Inc(Result, SizeOf(Integer) * _Primes.Count);

end;

function IsPrime(const N: TASI): Boolean;
var
  i: Integer;
  attempt: Integer;
begin

  if N < 2 then
    Exit(False);

  if N > MAX_ISPRIME_INDEX_SQUARE then
    raise EMathException.Create('Cannot test integers this large for primality.');

  ExpandPrimeCache(10000);

  // In general, we need primes up to Sqrt(N). But very often you are lucky,
  // and can tell it isn't prime by just having the first few primes available.
  // So don't spend a minute computing primes up to 1000000000 just in order to
  // find out that 1000000000000000000 is composite (the very first prime will do).
  for attempt := 0 to 1 do
  begin

    if N <= _IsPrime.Size - 1 then
      Exit(_IsPrime[N]);

    for i := 0 to _Primes.Count - 1 do
      if _Primes[i] > Sqrt(N) then
        Exit(True)
      else if N mod _Primes[i] = 0 then
        Exit(False);

    ExpandPrimeCache(Round(Sqrt(N)));

  end;

  raise EMathException.Create('Couldn''t determine if the integer is prime.');

  // Result := _IsPrime[N];

end;

function NthPrime(N: Integer): Integer;
begin

  if N < 1 then
    raise EMathException.Create('To obtain the Nth prime number, N must be a positive integer.');

  if N > INDEX_OF_MAX_PRIME then
    raise EMathException.Create('Cannot test integers this large for primality.');

  ExpandPrimeCache(10000);
  if N > 6 then
    ExpandPrimeCache(Ceil(N * Ln(N*Ln(N))));

  Dec(N); // now N is the zero-based index

  if N <= _Primes.Count - 1 then
    Exit(_Primes[N]);

  raise Exception.Create('Couldn''t obtain the Nth prime number.');

end;

function NextPrime(const N: TASI): TASI;
var
  i: TASI;
begin
  if N < 2 then
    Exit(2);
  for i := N + 1 to TASI.MaxValue do
    if IsPrime(i) then
      Exit(i);
  raise EMathException.Create('Cannot test integers this large for primality.');
end;

function PreviousPrime(const N: TASI): TASI;
var
  i: TASI;
begin
  if N <= 2 then
    raise EMathException.Create('There are no prime numbers smaller than 2.');
  for i := N - 1 downto 2 do
    if IsPrime(i) then
      Exit(i);
  raise Exception.Create('Internal error.');
end;

function PrimePi(const N: Integer): Integer;
begin

  if N > MAX_ISPRIME_INDEX then
    raise EMathException.Create('Cannot test integers this large for primality.');

  ExpandPrimeCache(N);
  if _Primes.BinarySearch(N, Result) then
    Inc(Result);

end;

function Primorial(const N: Integer): TASR;
var
  p: TASI;
begin
  if N < 0 then
    Result := 1
  else if InRange(N, Low(IntPrimorials), High(IntPrimorials)) then
    Result := IntPrimorials[N]
  else
  begin
    Result := IntPrimorials[High(IntPrimorials)];
    p := NextPrime(High(IntPrimorials));
    while p <= N do
    begin
      Result := p * Result;
      p := NextPrime(p);
    end;
  end;
end;

function Fibonacci(const N: Integer): TASR;
var
  i: Integer;
  prev, prevprev: TASR;
begin
//  Result := (IntPower(GoldenRatio, N) - IntPower(GoldenRatioConj, N)) / sqrt5; // less precise for large N and naive summation not much slower
  if N < 0 then
    raise EInvalidArgument.Create('To obtain the Nth Fibonacci number, N must be zero or a positive integer.');
  if N = 0 then
    Exit(0);
  if N = 1 then
    Exit(1);
  prev := 1;
  prevprev := 0;
  Result := 1; // to make compiler happy
  for i := 2 to N do
  begin
    Result := prev + prevprev;
    prevprev := prev;
    prev := Result;
  end;
end;

function Lucas(const N: Integer): TASR;
var
  i: Integer;
  prev, prevprev: TASR;
begin
  if N < 0 then
    raise EInvalidArgument.Create('To obtain the Nth Lucas number, N must be zero or a positive integer.');
  if N = 0 then
    Exit(2);
  if N = 1 then
    Exit(1);
  prev := 1;
  prevprev := 2;
  Result := 3; // to make sloppy compiler happy
  for i := 2 to N do
  begin
    Result := prev + prevprev;
    prevprev := prev;
    prev := Result;
  end;
end;

function Floor64(const X: TASR): TASI;
begin
  Result := TASI(Trunc(X));
  if Frac(X) < 0 then
    Dec(Result);
end;

function Ceil64(const X: TASR): TASI;
begin
  Result := TASI(Trunc(X));
  if Frac(X) > 0 then
    Inc(Result);
end;

function imod(const x, y: Integer): Integer; inline;
begin
//  Result := x - floor(x / y) * y;
  Result := x mod y;
  if Result < 0 then
    Inc(Result, y);
end;

function imod(const x, y: TASI): TASI; inline;
begin
//  Result := x - floor(x / y) * y;
  Result := x mod y;
  if Result < 0 then
    Inc(Result, y);
end;

function rmod(const x, y: TASR): TASR; inline;
begin
  Result := x - Floor64(x / y) * y;
end;

function modulo(const x, y: Integer): Integer; overload; inline;
begin
  Result := imod(x, y);
end;

function modulo(const x, y: TASR): TASR; overload; inline;
begin
  Result := rmod(x, y);
end;

function PrimeFactors(const N: TASI; AOnlyUnique: Boolean = False): TArray<TASI>;
var
  i: Integer;
  a: TASI;
begin

  if N < 1 then
    raise EMathException.Create('Cannot find the prime factors of a non-positive integer.');

  SetLength(Result, 0);

  if N = 1 then
    Exit{empty product = 1};

  if Assigned(_IsPrime) and (N <= _IsPrime.Size - 1) and IsPrime(N) then
  begin
    SetLength(Result, 1);
    Result[0] := N;
    Exit;
  end;

  a := N;

  ExpandPrimeCache(10000);

  for i := 0 to _Primes.Count - 1 do
  begin

    if _Primes[i] > Sqrt(a) then
    begin
      if AOnlyUnique then
        TArrBuilder<TASI>.AddUnique(Result, a)
      else
        TArrBuilder<TASI>.Add(Result, a);
      Exit;
    end;

    while a mod _Primes[i] = 0 do
    begin
      if AOnlyUnique then
        TArrBuilder<TASI>.AddUnique(Result, _Primes[i])
      else
        TArrBuilder<TASI>.Add(Result, _Primes[i]);
      a := a div _Primes[i];
      if a = 1 then Exit;
    end

  end;

  if ExpandPrimeCache(Round(Sqrt(N))) then
    Result := PrimeFactors(N, AOnlyUnique)
  else
    raise EMathException.Create('Couldn''t factor integer.');

end;

function PrimeFactorsWithMultiplicity(N: TASI): TArray<TIntWithMultiplicity>;
begin
  Result := CollapseWithMultiplicity(PrimeFactors(N));
end;

function Radical(N: TASI): TASI;
var
  p: TASI;
begin
  Result := 1;
  for p in PrimeFactors(N, True) do
    Result := Result * p;
end;

function IsSquareFree(N: TASI): Boolean;
var
  i: Integer;
  a: TASI;
begin

  N := Abs(N);

  if N = 0 then
    Exit(False);

  if Assigned(_IsPrime) and (N <= _IsPrime.Size - 1) and IsPrime(N) then
    Exit(True);

  a := N;

  ExpandPrimeCache(10000);

  for i := 0 to _Primes.Count - 1 do
  begin

    if _Primes[i] > Sqrt(a) then
      Exit(True);

    if a mod _Primes[i] = 0 then
    begin
      a := a div _Primes[i];
      if a = 1 then
        Exit(True);
      if a mod _Primes[i] = 0 then
        Exit(False);
    end

  end;

  if ExpandPrimeCache(Round(Sqrt(N))) then
    Result := IsSquareFree(N)
  else
    raise EMathException.Create('Couldn''t factor integer.');

end;

function factorize(const N: TASI): TArray<TASI>;
var
  neg: Boolean;
begin

  if (N = -1) or (N = 0) or (N = 1) then
  begin
    Result := [N];
    Exit;
  end;

  neg := N < 0;
  Result := PrimeFactors(Abs(N));
  if neg then
    Result[0] := -Result[0]; // exists since |N| <> 1

end;

function GetFactorizedString(const N: TASI; AMinusSign: Char = '-';
  AMultiplicationSign: Char = '*'; ASpace: Boolean = False): string;
begin
  Result := string.Join(
      IfThen(ASpace, ' ' + AMultiplicationSign + ' ', AMultiplicationSign),
      Int64ArrToStrArr(factorize(N))
    );
  if Copy(Result, 1, 1) = '-' then
    Result[1] := AMinusSign;
end;

function GetFactorizedString(const N: TASI; AFancy: Boolean): string; overload;
begin
  if AFancy then
    Result := GetFactorizedString(N, MINUS_SIGN, DOT_OPERATOR, False)
  else
    Result := GetFactorizedString(N);
end;

function divisors(const N: TASI): TArray<TASI>;
type
  TPrimePowerList = TList<TASI>;
  TPrimePowerListList = TObjectList<TPrimePowerList>;
var
  i: Integer;
  PrimeFactors: TArray<TASI>;
  list: TPrimePowerListList;
  LastPrime: TASI;
  LastPrimePower: TASI;
  PowerList: TPrimePowerList;
  ResList: TList<TASI>;
  Index: TArray<Integer>;

  function CurrentProduct: TASI;
  var
    j: Integer;
  begin
    Result := 1;
    for j := 0 to list.Count - 1 do
      Result := Result * list[j][Index[j]];
  end;

  function NextIndex: Boolean;

    function IncreaseDigit(Position: Integer): Boolean;
    begin
      Result := True;
      if Index[Position] < list[Position].Count - 1 then
        Inc(Index[Position])
      else
        if Position > 0 then
        begin
          Index[Position] := 0;
          Result := IncreaseDigit(Position - 1);
        end
        else
          Exit(False);
    end;

  begin
    if list.Count > 0 then
      Result := IncreaseDigit(list.Count - 1)
    else
      Result := False;
  end;

begin

  if N = 0 then
    raise EMathException.Create('Cannot compute divisors of zero (all non-zero integers are divisors of zero).');

  PrimeFactors := ASNum.PrimeFactors(Abs(N));

  list := TPrimePowerListList.Create(True);
  try

    PowerList := nil;
    LastPrime := 0;
    LastPrimePower := 0; // To make sloppy compiler happy
    for i := 0 to High(PrimeFactors) do
      if (i = 0) or (PrimeFactors[i] <> LastPrime) then
      begin
        PowerList := TPrimePowerList.Create;
        list.Add(PowerList);
        PowerList.Add(1);
        PowerList.Add(PrimeFactors[i]);
        LastPrime := PrimeFactors[i];
        LastPrimePower := LastPrime;
      end
      else
      begin
        LastPrimePower := LastPrimePower * LastPrime;
        PowerList.Add(LastPrimePower);
      end;

    ResList := TList<TASI>.Create;
    try
      SetLength(Index, list.Count);
      FillChar(Index[0], Length(Index) * SizeOf(Integer), 0);
      repeat
        ResList.Add(CurrentProduct)
      until not NextIndex;
      ResList.Sort;
      Result := ResList.ToArray;
    finally
      ResList.Free;
    end;

  finally
    list.Free;
  end;

end;

procedure FactorAsSquareAsPossible(const N: Integer; out A, B: Integer);
var
  i: Integer;
begin
  if N < 1 then
    raise EMathException.Create('FactorAsSquareAsPossible requires a positive integer as argument.');
  for i := Ceil(Sqrt(N)) to N do
    if N mod i = 0 then
    begin
      a := i;
      b := N div a;
      Exit;
    end;
end;

function MöbiusMu(const N: TASI): Integer;
var
  factors: TArray<TASI>;
  i: Integer;
begin

  Assert(INVALID_MÖBIUS_VALUE <> -1);
  Assert(INVALID_MÖBIUS_VALUE <>  0);
  Assert(INVALID_MÖBIUS_VALUE <> +1);

  // Initialize cache
  if _MöbiusCache = nil then
  begin
    SetLength(_MöbiusCache, 10*1024*1024);
    for i := 0 to High(_MöbiusCache) do
      _MöbiusCache[i] := INVALID_MÖBIUS_VALUE;
  end;

  // Obtain from cache if there
  if InRange(N, 1, High(_MöbiusCache)) and (_MöbiusCache[N] <> INVALID_MÖBIUS_VALUE) then
    Exit(_MöbiusCache[N]);

  // Compute naïvely
  factors := PrimeFactors(N);
  for i := 1 to High(factors) do
    if factors[i] = factors[i - 1] then
      Exit(0);

  // N is square free:
  Result := AltSgn(Length(factors));

  // Cache Result
  if InRange(N, 1, High(_MöbiusCache)) then
    _MöbiusCache[N] := Result;

end;

function Mertens(const N: TASI): Integer;
var
  i: Integer;
begin

  if N < 1 then
    raise EMathException.Create('Cannot compute Mertens number for a non-positive index.');

  // Init cache
  if _MertensCache = nil then
  begin
    _MertensCache := TList<Integer>.Create;
    _MertensCache.Add(0);
  end;

  // Use cached value
  if InRange(N, 0, _MertensCache.Count - 1) then
    Exit(_MertensCache[N]);

  // Compute from highest cached value
  Result := _MertensCache[_MertensCache.Count - 1];
  for i := _MertensCache.Count - 1 + 1 to N do
  begin
    Inc(Result, MöbiusMu(i));
    _MertensCache.Add(Result);
  end;

end;

function IsCarolNumber(N: TASI): Boolean;
var
  c, k: Integer;
begin

  if (N = -1) or (N = 7) then
    Exit(True);

  if N < 7 then
    Exit(False);

  c := 0;
  while Odd(N) do
  begin
    Inc(c);
    N := N shr 1;
  end;

  k := c - 1;
  if k <= 2 then
    Exit(False);

  if N = 0 then
    Exit(False);

  N := N shr 1;

  c := 0;
  while Odd(N) do
  begin
    Inc(c);
    N := N shr 1;
  end;

  Result := (c = k - 2) and (N = 0);

end;

function RationalNumber(const ANumerator, ADenominator: TASI): TRationalNumber;
begin
  Result := TRationalNumber.Create(ANumerator, ADenominator);
end;

function __ToFraction(const X: TASR): TRationalNumber;
const
  MaxDecLen = 12;
  pot: array[0..MaxDecLen] of TASI = (1, 10, 100, 1000, 10000, 100000,
    1000000, 10000000, 100000000, 1000000000, 10000000000, 100000000000,
    1000000000000);
  MaxQLen = 100000;
var
  i: Integer;
  absX, fracX: TASR;
  intX: Integer;
  sgnX: Integer;
  q: Integer;
begin

  for i := 0 to MaxDecLen do
    if IsInteger(pot[i] * X, 1E-16 * pot[i]) then
      Exit(RationalNumber(round(pot[i] * X), pot[i]));

  absX := abs(X);
  intX := trunc(absX);
  fracX := frac(absX);
  sgnX := sign(X);

  for q := 1 to MaxQLen do
    if IsInteger(q * fracX) then
      Exit(RationalNumber(sgnX * (intX * q + Round(fracX * q)), q));

  Result.Denominator := 0;

end;

function ToFraction(const X: TASR): TRationalNumber;
begin
  Result := ContinuedFractionToFraction(ContinuedFraction(X));
end;

function ToSymbolicForm(const X: TASR; APriority: TTSFPrio = tsfpSimplest): TSimpleSymbolicForm;
type
  TSymbolRec = record
    Sym: string;
    Val: Extended;
  end;
const
  symbols: array[0..14] of TSymbolRec = (
    (Sym: 'π'; Val: pi),
    (Sym: '√π'; Val: SqrtPi),
    (Sym: '√(2π)'; Val: Sqrt2Pi),
    (Sym: '(√(2π))⁻¹'; Val: Sqrt2PiInv),
    (Sym: '(√π)⁻¹'; Val: SqrtPiInv),
    (Sym: 'π²'; Val: PiSq),
    (Sym: 'π³'; Val: PiCb),
    (Sym: 'π⁻¹'; Val: PiInv),
    (Sym: 'π⁻²'; Val: PiInvSq),
    (Sym: 'e'; Val: EulerConstant),
    (Sym: '√e'; Val: SqrtEulerConstant),
    (Sym: 'e²'; Val: EulerConstantSq),
    (Sym: 'e³'; Val: EulerConstantCb),
    (Sym: 'e⁻¹'; Val: EulerConstantInv),
    (Sym: 'e⁻²'; Val: EulerConstantInvSq));
type
  TPossibility = record
    Denominator: TASI;
    SSF: TSimpleSymbolicForm;
  end;

  function MakePossibility(const Fraction: TRationalNumber;
    const SSF: TSimpleSymbolicForm): TPossibility;
  begin
    Result.Denominator := Fraction.Denominator;
    Result.SSF := SSF;
  end;

var
  rn: TRationalNumber;
  sr: TSymbolRec;
  i: Integer;
  possibilities: TList<TPossibility>;
const
  REASONABLE_DENOM_UNIT_FACTOR = 5E6;
  REASONABLE_DENOM_VARYING_FACTOR = 1E5;
  SMALL_SQUARE_FREE_INTS = [2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22,
    23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55,
    57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85,
    86, 87, 89, 91, 93, 94, 95, 97];
begin

  possibilities := TList<TPossibility>.Create;
  try

    rn := ToFraction(X);
    if rn.valid and (rn.Denominator < REASONABLE_DENOM_UNIT_FACTOR) and SameValue2(X, rn) then
      possibilities.Add(MakePossibility(rn, TSimpleSymbolicForm.Create(rn)));

    for sr in symbols do
    begin
      rn := ToFraction(X / sr.Val);
      if rn.valid and (rn.Denominator < REASONABLE_DENOM_VARYING_FACTOR) and SameValue2(X, TASR(rn) * sr.Val) then
        possibilities.Add(MakePossibility(rn,
          TSimpleSymbolicForm.Create(rn, sr.Sym, sr.Val)))
    end;

    for i in SMALL_SQUARE_FREE_INTS do
    begin
      rn := ToFraction(X / sqrt(i));
      if rn.valid and (rn.Denominator < REASONABLE_DENOM_VARYING_FACTOR) and SameValue2(X, TASR(rn) * sqrt(i)) then
        possibilities.Add(MakePossibility(rn,
          TSimpleSymbolicForm.Create(rn, '√' + IntToStr(i), sqrt(i))))
    end;

    if possibilities.Count > 0 then
    begin
      case APriority of
        tsfpSimplest:
          possibilities.Sort(TComparer<TPossibility>.Construct(
            function(const Left, Right: TPossibility): Integer
            begin
              Result := CompareValue(Left.Denominator, Right.Denominator);
            end
          ));
        tsfpMostExact:
          possibilities.Sort(TComparer<TPossibility>.Construct(
            function(const Left, Right: TPossibility): Integer
            begin
              Result := CompareValue(Abs(TASR(Left.SSF) - X), Abs(TASR(Right.SSF) - X));
            end
          ));
      end;
      Result := possibilities.First.SSF;
    end
    else
      Result.CreateInvalid(X);

  finally
    possibilities.Free;
  end;

end;

function CToSymbolicForm(const z: TASC; APriority:
  TTSFPrio = tsfpSimplest): TCSimpleSymbolicForm;
begin
  Result.Re := ToSymbolicForm(z.Re, APriority);
  Result.Im := ToSymbolicForm(z.Im, APriority);
end;

function IversonBracket(b: Boolean): Integer;
begin
  if b then
    Result := 1
  else
    Result := 0;
end;

function KroneckerDelta(i, j: Integer): Integer;
begin
  Result := IversonBracket(i = j);
end;

function KroneckerDelta(i, j: TASI): Integer;
begin
  Result := IversonBracket(i = j);
end;

function LegendreSymbol(a, p: TASI): Integer;
begin
  if IsPrime(p) then
    Result := JacobiSymbol(a, p)
  else
    raise EMathException.CreateFmt('Non-prime modulus for Legendre symbol: %d', [p]);
end;

function JacobiSymbol(a, n: TASI): Integer;
var
  evenness: Integer;
begin
  if not (Odd(n) and (n > 0)) then
    raise EMathException.CreateFmt('Invalid modulus (not an odd positive integer) for Jacobi symbol: %d', [n]);
  if not coprime(a, n) then
    Exit(0);
  if n = 1 then
    Exit(1);
  a := imod(a, n);
  if a = 1 then
    Exit(1);
  evenness := 0;
  while not Odd(a) do
  begin
    a := a div 2;
    Inc(evenness);
  end;
  if evenness > 0 then
    if Odd(Evenness) and ((n mod 8 = 3) or (n mod 8 = 5)) then
      Exit(-JacobiSymbol(a, n))
    else
      Exit(JacobiSymbol(a, n));
  if (n mod 4 = 3) and (a mod 4 = 3) then
    Exit(-JacobiSymbol(n, a))
  else
    Exit(JacobiSymbol(n, a));
end;

function LegendrePrime2(const a: TASI): TASI; inline;
begin
  if a mod 2 = 0 then
    Result := 0
  else if imod(a, 8) in [1, 7] then
    Result := 1
  else
    Result := -1;
end;

function KroneckerSymbol(a, n: TASI): Integer;
var
  PrimeFactors: TArray<TIntWithMultiplicity>;
  Factors: TArray<TASI>;
  i: Integer;
begin
  if n = 0 then
    if Abs(a) = 1 then
      Exit(1)
    else
      Exit(0);
  PrimeFactors := PrimeFactorsWithMultiplicity(Abs(n));
  SetLength(Factors, Length(PrimeFactors));
  for i := 0 to High(PrimeFactors) do
    if PrimeFactors[i].Factor = 2 then
      Factors[i] := intpow(LegendrePrime2(a), PrimeFactors[i].Multiplicity)
    else
      Factors[i] := intpow(JacobiSymbol(a, PrimeFactors[i].Factor), PrimeFactors[i].Multiplicity);
  Result := product(Factors);
  if (n < 0) and (a < 0) then
    Result := -Result;
end;

function Cube(const Val: Integer): Integer; inline;
begin
  Result := Val*Val*Val;
end;

function Forth(const Val: Integer): Integer; inline;
begin
  Result := Val*Val*Val*Val;
end;

function ContinuedFraction(x: TASR; maxlen: Integer = 18): TArray<TASI>;
var
  n: TASI;
  f: TASR;
begin
  while True do
  begin
    if not InRange(x, TASR(TASI.MinValue), TASR(TASI.MaxValue)) then
      Break;
    n := Round(x - 0.5 + 1E-5);
    f := x - n;
    TArrBuilder<TASI>.Add(Result, n);
    if IsZero(f, Cube(Length(Result)) * 1E-6) or (Length(Result) = maxlen) then
      Break
    else
      x := 1/f;
  end;
end;

function ContinuedFraction(const x: TRationalNumber): TArray<TASI>;
var
  a, b, q, r: TASI;
begin

  a := x.Numerator;
  b := x.Denominator;

  if b < 0 then
  begin
    a := -a;
    b := -b;
  end;

  repeat
    q := a div b; // actually, we want the floor...
    r := a mod b;
    if (a < 0) and (r <> 0) then // ...so we need this check...
    begin
      Dec(q); // ...so we can get the floor
      Inc(r, b);
    end;
    TArrBuilder<TASI>.Add(Result, q);
    a := b;
    b := r;
  until r = 0;

end;

function _CFBuild(const CF: TArray<TASI>; Index: Integer): TRationalNumber;
begin
  Result := CF[Index];
  if Index < High(CF) then
    Result := Result + _CFBuild(CF, Index + 1).inv;
end;

function ContinuedFractionToFraction(const AContinuedFraction: TArray<TASI>): TRationalNumber;
begin
  if Length(AContinuedFraction) = 0 then
    FillChar(Result, SizeOf(Result), 0)
  else
    Result := _CFBuild(AContinuedFraction, 0);
end;

function Heaviside(const X: TASR): TASR; inline;
begin
  if X < 0 then
    Result := 0
  else if X > 0 then
    Result := 1
  else
    Result := 1/2;
end;

function Ramp(const X: TASR): TASR; inline;
begin
  if X < 0 then
    Result := 0
  else
    Result := X;
end;

function Rectfcn(const X: TASR): TASR; inline;
var
  AbsX: TASR;
begin
  AbsX := Abs(X);
  if AbsX > 0.5 then
    Result := 0
  else if AbsX < 0.5 then
    Result := 1
  else
    Result := 1/2;
end;

function Tri(const X: TASR): TASR; inline;
var
  AbsX: TASR;
begin
  AbsX := Abs(X);
  if AbsX < 1 then
    Result := 1 - AbsX
  else
    Result := 0;
end;

function SquareWaveUnit(const X: TASR): TASR;
begin
  if X = 0 then
    Result := 0
  else if X < Pi then
    Result := 1
  else if X = Pi then
    Result := 0
  else
    Result := -1;
end;

function SquareWave(const X: TASR): TASR;
begin
  Result := SquareWaveUnit(rmod(X, TwoPi));
end;

function TriangleWaveUnit(const X: TASR): TASR;
begin
  if X <= PiDiv2 then
    Result := TwoDivPi * X
  else if X <= 3*PiDiv2 then
    Result := 2 - TwoDivPi * X
  else
    Result := -4 + TwoDivPi * X;
end;

function TriangleWave(const X: TASR): TASR;
begin
  Result := TriangleWaveUnit(rmod(X, TwoPi));
end;

function SawtoothWaveUnit(const X: TASR): TASR;
begin
  if X < Pi then
    Result := PiInv * X
  else if X = Pi then
    Result := 0
  else
    Result := -2 + PiInv * X;
end;

function SawtoothWave(const X: TASR): TASR;
begin
  Result := SawtoothWaveUnit(rmod(X, TwoPi));
end;

function differentiate(AFunction: TRealFunctionRef; const X, ε: TASR): TASR;
begin
  Result := (AFunction(X + ε) - AFunction(X - ε)) / (2*ε);
end;


{ **************************************************************************** }
{ Numerical integration                                                        }
{ **************************************************************************** }

constructor TIntegrationCacheItem.Create(AX: TASR; AVal: TASR = NaN);
begin
  X := AX;
  Val := AVal;
end;

constructor TIntegrationParams.N(const AN: Integer);
begin
  Self.FixedDelta := False;
  Self.FN := AN;
end;

constructor TIntegrationParams.Delta(const ADelta: TASR);
begin
  Self.FixedDelta := True;
  Self.FDelta := ADelta;
end;

function integrate(AFunction: TRealFunctionRef; a, b: TASR;
  const AParams: TIntegrationParams): TASR;
var
  x: TASR;
  N: Integer;
  Delta: TASR;
  HalfDelta: TASR;
  prev, cur: TASR;
  s, e: TASR;
begin
  if a = b then
    Exit(0);

  if AParams.FixedDelta then
    N := Ceil(abs(b - a) / AParams.FDelta)
  else
    N := AParams.FN;

  Delta := (b - a) / N;
  HalfDelta := Delta / 2; {signed}
  if Delta < 0 then
    Delta := -Delta; {unsigned}
  s := min(a, b);
  e := max(a, b);

  e := e + Delta / 100;

  Result := 0;
  prev := AFunction(s);
  x := s + Delta;
  while x < e do
  begin
    cur := AFunction(x);
    Result := Result + (prev + cur) * HalfDelta;
    prev := cur;
    x := x + Delta;
  end;
end;

function integrate(AFunction: TRealFunctionRef; a, b: TASR): TASR;
begin
  Result := integrate(AFunction, a, b, DefaultIntegrationParams);
end;

function integrate(AFunction: TComplexFunctionRef; a, b: TASR;
  const AParams: TIntegrationParams): TASC;
var
  x: TASR;
  N: Integer;
  Delta: TASR;
  HalfDelta: TASR;
  prev, cur: TASC;
  s, e: TASR;
begin
  if a = b then
    Exit(0);

  if AParams.FixedDelta then
    N := ceil(abs(b - a) / AParams.FDelta)
  else
    N := AParams.FN;

  Delta := (b - a) / N;
  HalfDelta := Delta / 2; {signed}
  if Delta < 0 then
    Delta := -Delta; {unsigned}
  s := min(a, b);
  e := max(a, b);

  e := e + Delta / 100;

  Result := 0;
  prev := AFunction(s);
  x := s + Delta;
  while x < e do
  begin
    cur := AFunction(x);
    Result := Result + (prev + cur) * HalfDelta;
    prev := cur;
    x := x + Delta;
  end;
end;

function integrate(AFunction: TComplexFunctionRef; a, b: TASR): TASC;
begin
  Result := integrate(AFunction, a, b, DefaultIntegrationParams);
end;

function FillIntegrationCache(AFunction: TRealFunctionRef; a, b: TASR;
  const CacheDelta: TASR;
  var Cache: TIntegrationCache;
  const AParams: TIntegrationParams): TASR;
var
  x: TASR;
  N: Integer;
  Delta: TASR;
  HalfDelta: TASR;
  prev, cur: TASR;
  OldLength, ActualLength: Integer;
  OldEnd, OldEndVal: TASR;
begin

  if (Length(Cache) > 0) and (Cache[High(Cache)].X >= b) then
    Exit(NaN);

  if a > b then
    raise EMathException.Create('FillIntegrationCache: Invalid parameters (a > b).');

  if (Length(Cache) > 0) and (Cache[0].X <> a) then
    raise EMathException.Create('FillIntegrationCache: Invalid integration cache passed to function.');

  if (Length(Cache) = 0) and (a = b) then
  begin
    SetLength(Cache, 1);
    Cache[0].X := a;
    Cache[0].Val := 0;
    Exit(0);
  end;

  if AParams.FixedDelta then
    N := Ceil((b - a) / AParams.FDelta)
  else
    N := AParams.FN;

  Delta := (b - a) / N;
  HalfDelta := Delta / 2;

  b := b + Delta / 100;

  if Length(Cache) = 0 then
  begin
    SetLength(Cache, ceil((b - a) / CacheDelta) + 1); // upper bound, MUST not be exceeded
    Cache[0].X := a;
    Cache[0].Val := 0;
    ActualLength := 1;
    OldEnd := a;
    OldEndVal := 0;
  end
  else
  begin
    OldLength := Length(Cache);
    OldEnd := Cache[High(Cache)].X;
    OldEndVal := Cache[High(Cache)].Val;
    SetLength(Cache, OldLength + Ceil((b - OldEnd) / CacheDelta) + 1); // upper bound, MUST not be exceeded
    ActualLength := OldLength;
  end;

  Result := OldEndVal;
  prev := AFunction(OldEnd);
  x := OldEnd + Delta;
  while x < b do
  begin
    cur := AFunction(x);
    Result := Result + (prev + cur) * HalfDelta;

    if x - Cache[ActualLength - 1].X >= CacheDelta then
    begin
      Cache[ActualLength].X := x;
      Cache[ActualLength].Val := Result;
      Inc(ActualLength);
    end;

    prev := cur;
    x := x + Delta;
  end;

  Assert(ActualLength <= Length(Cache));
  SetLength(Cache, ActualLength);

end;

function FillIntegrationCache(AFunction: TRealFunctionRef; a, b: TASR;
  const CacheDelta: TASR; var Cache: TIntegrationCache): TASR;
begin
  Result := FillIntegrationCache(AFunction, a, b, CacheDelta, Cache,
    DefaultIntegrationParams);
end;

procedure StepwiseIntegrationCacheFill(AIntegrand: TRealFunctionRef;
  var ACache: TIntegrationCache; ACacheDelta: TASR; const Steps: array of TASR;
  const x: TASR; const a: TASR = 0);
var
  b: TASR;
begin
  for b in Steps do
    if x <= b then
    begin
      FillIntegrationCache(AIntegrand, a, b, ACacheDelta, ACache);
      Exit;
    end;
end;

procedure StepwiseIntegrationCacheFill(AIntegrand: TRealFunctionRef;
  var ACache: TIntegrationCache; ACacheDelta: TASR; const Steps: array of TASR;
  const x: TASR; const AParams: TIntegrationParams; const a: TASR = 0);
var
  b: TASR;
begin
  for b in Steps do
    if x <= b then
    begin
      FillIntegrationCache(AIntegrand, a, b, ACacheDelta, ACache, AParams);
      Exit;
    end;
end;

function ClearIntegrationCache(var ACache: TIntegrationCache): Integer;
begin
  Result := Length(ACache);
  SetLength(ACache, 0);
end;

function GetIntegrationCacheSize(const ACache: TIntegrationCache): Integer;
begin
  Result := Length(ACache) * SizeOf(TIntegrationCacheItem);
end;

function CachedIntegration(AFunction: TRealFunctionRef; a, b: TASR;
  const ACache: TIntegrationCache; const AParams: TIntegrationParams): TASR;
var
  CacheIndex: Integer;
  CacheItem: TIntegrationCacheItem;
  Comparer: IComparer<TIntegrationCacheItem>;
  ExactMatch: Boolean;
  Params: TIntegrationParams;
  sgn: TASR;
begin

  sgn := 1;
  if a = b then
    Exit(0)
  else if a > b then
  begin
    TSwapper<TASR>.Swap(a, b);
    sgn := -1;
  end;

  if (Length(ACache) > 0) and (ACache[0].X = a) then
  begin
    if b <= ACache[High(ACache)].X then
    begin
      Comparer := TDelegatedComparer<TIntegrationCacheItem>.Create(
        function(const Left, Right: TIntegrationCacheItem): Integer
        begin
          Result := Sign(Left.X - Right.X);
        end);
      ExactMatch := TArray.BinarySearch<TIntegrationCacheItem>(ACache,
        TIntegrationCacheItem.Create(b),
        CacheIndex,
        Comparer);
      if ExactMatch then
        Exit(sgn * ACache[CacheIndex].Val)
      else
        CacheItem := ACache[CacheIndex - 1];
    end
    else // b > ACache[High(ACache)].X
      CacheItem := ACache[High(ACache)];
  end
  else
    raise EMathException.Create('CachedIntegration: Invalid integration cache passed to function.');

  // Compute rest of integral: from CacheItem.X to b
  Params := AParams;
  if not Params.FixedDelta then
    Params.FN := ceil(Params.FN * (b - CacheItem.X) / (b - a));

  Result := CacheItem.Val + integrate(AFunction, CacheItem.X, b, Params);

  if sgn < 0 then
    Result := -Result;

end;

function CachedIntegration(AFunction: TRealFunctionRef; a, b: TASR;
  const ACache: TIntegrationCache): TASR;
begin
  Result := CachedIntegration(AFunction, a, b, ACache, DefaultIntegrationParams);
end;


{ **************************************************************************** }
{ Sums and products                                                            }
{ **************************************************************************** }

function sum(const Vals: array of TASI): TASI;
var
  i: Integer;
begin
  Result := 0;
  for i := 0 to High(Vals) do
    Result := Result + Vals[i];
end;

function product(const Vals: array of TASI): TASI;
var
  i: Integer;
begin
  Result := 1;
  for i := 0 to High(Vals) do
    Result := Result * Vals[i];
end;

function accumulate(AFunction: TSequence<TASR>; a, b: Integer;
  AStart: TASR; AAccumulator: TAccumulator<TASR>): TASR;
var
  i: Integer;
begin
  Result := AStart;
  for i := a to b do
    Result := AAccumulator(Result, AFunction(i));
end;

function accumulate(AFunction: TSequence<TASC>; a, b: Integer;
  AStart: TASC; AAccumulator: TAccumulator<TASC>): TASC;
var
  i: Integer;
begin
  Result := AStart;
  for i := a to b do
    Result := AAccumulator(Result, AFunction(i));
end;

function sum(AFunction: TSequence<TASR>; a, b: Integer): TASR;
begin
  Result := accumulate(AFunction, a, b, 0, ASR_PLUS)
end;

function sum(AFunction: TSequence<TASC>; a, b: Integer): TASC;
begin
  Result := accumulate(AFunction, a, b, 0, ASC_PLUS)
end;

function ArithmeticMean(AFunction: TSequence<TASR>; a, b: Integer): TASR;
begin
  Result := sum(AFunction, a, b) / NN(b - a + 1)
end;

function ArithmeticMean(AFunction: TSequence<TASC>; a, b: Integer): TASC;
begin
  Result := sum(AFunction, a, b) / NN(b - a + 1)
end;

function GeometricMean(AFunction: TSequence<TASR>; a, b: Integer): TASR;
var
  p: TASR;
begin
  p := 1 / NN(b - a + 1);
  Result := { pow(product(AFunction, a, b), 1 / (b - a + 1)) = }
            product(function(N: Integer): TASR
              begin
                Result := pow(AFunction(N), p)
              end, a, b);
end;

function GeometricMean(AFunction: TSequence<TASC>; a, b: Integer): TASC;
begin
  Result := cpow(product(AFunction, a, b), 1 / NN(b - a + 1));
  // Notice that (z w)^p may not equal z^p w^p
end;

function HarmonicMean(AFunction: TSequence<TASR>; a, b: Integer): TASR;
begin
  Result := 1 / (
            ArithmeticMean(function(N: Integer): TASR
              begin
                Result := 1 / AFunction(N);
              end, a, b)
    );
end;

function HarmonicMean(AFunction: TSequence<TASC>; a, b: Integer): TASC;
begin
  Result := 1 / (
            ArithmeticMean(function(N: Integer): TASC
              begin
                Result := 1 / AFunction(N);
              end, a, b)
    );
end;

function product(AFunction: TSequence<TASR>; a, b: Integer): TASR;
begin
  Result := accumulate(AFunction, a, b, 1, ASR_TIMES)
end;

function product(AFunction: TSequence<TASC>; a, b: Integer): TASC;
begin
  Result := accumulate(AFunction, a, b, 1, ASC_TIMES)
end;

function max(AFunction: TSequence<TASR>; a, b: Integer): TASR;
var
  i: Integer;
begin
  if a > b then
    raise EMathException.Create('Cannot find maximum value in a set of zero values.');
  Result := AFunction(a);
  for i := a + 1 to b do
    if AFunction(i) > Result then
      Result := AFunction(i);
end;

function min(AFunction: TSequence<TASR>; a, b: Integer): TASR;
var
  i: Integer;
begin
  if a > b then
    raise EMathException.Create('Cannot find minimum value in a set of zero values.');
  Result := AFunction(a);
  for i := a + 1 to b do
    if AFunction(i) < Result then
      Result := AFunction(i);
end;

function exists(AFunction: TSequence<TASR>; a, b: Integer;
  APredicate: TPredicate<TASR>): Boolean; overload;
var
  i: Integer;
begin
  for i := a to b do
    if APredicate(AFunction(i)) then
      Exit(True);
  Result := False;
end;

function exists(AFunction: TSequence<TASC>; a, b: Integer;
  APredicate: TPredicate<TASC>): Boolean; overload;
var
  i: Integer;
begin
  for i := a to b do
    if APredicate(AFunction(i)) then
      Exit(True);
  Result := False;
end;

function count(AFunction: TSequence<TASR>; a, b: Integer;
  APredicate: TPredicate<TASR>): Integer; overload;
var
  i: Integer;
begin
  Result := 0;
  for i := a to b do
    if APredicate(AFunction(i)) then
      Inc(Result);
end;

function count(AFunction: TSequence<TASC>; a, b: Integer;
  APredicate: TPredicate<TASC>): Integer; overload;
var
  i: Integer;
begin
  Result := 0;
  for i := a to b do
    if APredicate(AFunction(i)) then
      Inc(Result);
end;

function count(AFunction: TSequence<TASR>; a, b: Integer;
  AValue: TASR): Integer; overload;
var
  i: Integer;
begin
  Result := 0;
  for i := a to b do
    if SameValue(AFunction(i), AValue) then
      Inc(Result);
end;

function count(AFunction: TSequence<TASC>; a, b: Integer;
  AValue: TASC): Integer; overload;
var
  i: Integer;
begin
  Result := 0;
  for i := a to b do
    if CSameValue(AFunction(i), AValue) then
      Inc(Result);
end;

function ForAll(AFunction: TSequence<TASR>; a, b: Integer;
  APredicate: TPredicate<TASR>): Boolean; overload;
var
  i: Integer;
begin
  for i := a to b do
    if not APredicate(AFunction(i)) then
      Exit(False);
  Result := True;
end;

function ForAll(AFunction: TSequence<TASC>; a, b: Integer;
  APredicate: TPredicate<TASC>): Boolean; overload;
var
  i: Integer;
begin
  for i := a to b do
    if not APredicate(AFunction(i)) then
      Exit(False);
  Result := True;
end;

function contains(AFunction: TSequence<TASR>; a, b: Integer;
  const AValue: TASR): Boolean; overload;
var
  i: Integer;
begin
  for i := a to b do
    if SameValue(AFunction(i), AValue) then
      Exit(True);
  Result := False;
end;

function contains(AFunction: TSequence<TASC>; a, b: Integer;
  const AValue: TASC): Boolean; overload;
var
  i: Integer;
begin
  for i := a to b do
    if CSameValue(AFunction(i), AValue) then
      Exit(True);
  Result := False;
end;


{ **************************************************************************** }
{ Special functions                                                            }
{ **************************************************************************** }

const
  DEFAULT_CACHE_DELTA = 1E-4;
  NUM_INTEGRATION_CACHES = 8;

var
  _integration_cache_list: array[0..NUM_INTEGRATION_CACHES - 1] of PIntegrationCache;
  _erf_cache: TIntegrationCache; // values are (sqrt(pi) / 2) erf(x)
  _fresnelc_cache: TIntegrationCache;
  _fresnels_cache: TIntegrationCache;
  _si_cache: TIntegrationCache;
  _ci_cache: TIntegrationCache;
  _li_from2_cache: TIntegrationCache;
  _li_to1_cache: TIntegrationCache;
  _li_Xto2_cache: TIntegrationCache;

procedure InitSpecialFunctionsIntegrationCacheList;
begin
  _integration_cache_list[0] := @_erf_cache;
  _integration_cache_list[1] := @_fresnelc_cache;
  _integration_cache_list[2] := @_fresnels_cache;
  _integration_cache_list[3] := @_ci_cache;
  _integration_cache_list[4] := @_si_cache;
  _integration_cache_list[5] := @_li_from2_cache;
  _integration_cache_list[6] := @_li_to1_cache;
  _integration_cache_list[7] := @_li_Xto2_cache;
end;

const
  _erf_cache_delta = DEFAULT_CACHE_DELTA;
  _fresnelc_cache_delta = DEFAULT_CACHE_DELTA;
  _fresnels_cache_delta = DEFAULT_CACHE_DELTA;
  _si_cache_delta = DEFAULT_CACHE_DELTA;
  _ci_cache_delta = DEFAULT_CACHE_DELTA;
  _li_from2_cache_delta = DEFAULT_CACHE_DELTA;
  _li_to1_cache_delta = 1E-6;
  _li_Xto2_cache_delta = 1E-6;

function GetSpecialFunctionsIntegrationCacheSize: Integer;
var
  p: PIntegrationCache;
begin
  Result := 0;
  for p in _integration_cache_list do
    Inc(Result, GetIntegrationCacheSize(p^));
end;

procedure ClearSpecialFunctionsIntegrationCaches;
var
  p: PIntegrationCache;
begin
  for p in _integration_cache_list do
    ClearIntegrationCache(p^);
end;

function erf(const X: TASR): TASR;
var
  integrand: TRealFunctionRef;
begin

  if X = 0 then
    Exit(0);

  if X < 0 then
    Exit(-erf(-X));

  if X >= 6 then
    Exit(1);

  integrand := function(const t: TASR): TASR
    begin
      Result := exp(-t*t);
    end;

  if not Assigned(_erf_cache) then
    FillIntegrationCache(integrand, 0, 6, _erf_cache_delta, _erf_cache);

  Result := (2/sqrt(pi)) * CachedIntegration(integrand, 0, X, _erf_cache);

end;

function erfc(const X: TASR): TASR; inline;
begin
  Result := 1 - erf(X);
end;

const
  StepwiseCacheSequence: array[0..10] of TASR = (1, 5, 10, 25, 50, 75, 100, 200, 300, 400, 500);
  StepwiseCacheSequenceZeroToOne: array[0..8] of TASR = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9);
  StepwiseCacheSequenceOneToTwo: array[0..8] of TASR = (1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 0.9);

function FresnelC(const X: TASR): TASR;
var
  integrand: TRealFunctionRef;
begin

  if X = 0 then
    Exit(0);

  if X < 0 then
    Exit(-FresnelC(-X));

  integrand := function(const t: TASR): TASR
    begin
      Result := cos(t*t);
    end;

  StepwiseIntegrationCacheFill(integrand, _fresnelc_cache, _fresnelc_cache_delta,
    StepwiseCacheSequence, X);

  Result := CachedIntegration(integrand, 0, X, _fresnelc_cache);

end;

function FresnelS(const X: TASR): TASR;
var
  integrand: TRealFunctionRef;
begin

  if X = 0 then
    Exit(0);

  if X < 0 then
    Exit(-FresnelS(-X));

  integrand := function(const t: TASR): TASR
    begin
      Result := sin(t*t);
    end;

  StepwiseIntegrationCacheFill(integrand, _fresnels_cache, _fresnels_cache_delta,
    StepwiseCacheSequence, X);

  Result := CachedIntegration(integrand, 0, X, _fresnels_cache);

end;

function Si(const X: TASR): TASR;
begin

  if X = 0 then
    Exit(0);

  if X < 0 then
    Exit(-Si(-X));

  StepwiseIntegrationCacheFill(sinc, _si_cache, _si_cache_delta, StepwiseCacheSequence, X);

  Result := CachedIntegration(sinc, 0, X, _si_cache);

end;

function Ci(const X: TASR): TASR;
var
  integrand: TRealFunctionRef;
begin

  if X <= 0 then
    raise EMathException.Create('Cosine integral only defined for positive real numbers.');

  integrand := function(const t: TASR): TASR
    begin
      if IsZero(t) then
        Result := 0
      else
        Result := (cos(t) - 1) / t;
    end;

  StepwiseIntegrationCacheFill(integrand, _ci_cache, _ci_cache_delta,
    StepwiseCacheSequence, X);

  Result := EulerMascheroni + ln(x) + CachedIntegration(integrand, 0, X, _ci_cache);

end;

function LiFrom2(const X: TASR): TASR;
var
  integrand: TRealFunctionRef;
begin

  integrand := function(const t: TASR): TASR
    begin
      Result := 1 / ln(t);
    end;

  StepwiseIntegrationCacheFill(integrand, _li_from2_cache, _li_from2_cache_delta,
    StepwiseCacheSequence, X, 2);

  Result := CachedIntegration(integrand, 2, X, _li_from2_cache);

end;

function LiTo1(const X: TASR): TASR;
var
  integrand: TRealFunctionRef;
begin

  integrand := function(const t: TASR): TASR
    begin
      Result := 1 / ln(t);
    end;

  StepwiseIntegrationCacheFill(integrand, _li_to1_cache, _li_to1_cache_delta,
    StepwiseCacheSequenceZeroToOne, X, TIntegrationParams.Delta(1E-8), Double.Epsilon);

  Result := CachedIntegration(integrand, Double.Epsilon, X, _li_to1_cache,
    TIntegrationParams.Delta(1E-8));

end;

function LiXTo2(const X: TASR): TASR;
var
  integrand: TRealFunctionRef;
begin

  integrand := function(const t: TASR): TASR
    begin
      Result := 1 / ln(2 - t);
    end;

  StepwiseIntegrationCacheFill(integrand, _li_Xto2_cache, _li_Xto2_cache_delta,
    StepwiseCacheSequenceOneToTwo, 2 - X);

  Result := CachedIntegration(integrand, 0, 2 - X, _li_Xto2_cache);

end;

function Li(const X: TASR): TASR;
const
  Li2 = 1.045163780117492784844588889194613136522615;
var
  integrand: TRealFunctionRef;
begin

  integrand := function(const t: TASR): TASR
    begin
      Result := 1 / ln(t);
    end;

  if X >= 2 then
    Result := Li2 + LiFrom2(X)
  else if X > 1 then
    Result := Li2 - LiXTo2(X)
  else if IsZero(X) then
    Result := 0
  else if X < 1 then
    Result := LiTo1(X)
  else
    Result := -Infinity;

end;

function Bessel(N: Integer; const X: TASR; const AParams: TIntegrationParams): TASR;
var
  integrand: TRealFunctionRef;
begin

  if X = 0 then
    if N = 0 then
      Exit(1)
    else
      Exit(0);

  integrand := function(const t: TASR): TASR
    begin
      Result := cos(N * t - x * sin(t));
    end;

  Result := integrate(integrand, 0, pi, AParams) / pi;

end;

function Bessel(N: Integer; const X: TASR): TASR;
begin
  Result := Bessel(N, X, DefaultIntegrationParams);
end;

function Bessel(N: Integer; const z: TASC; const AParams: TIntegrationParams): TASC;
var
  integrand: TComplexFunctionRef;
  zp: TASC;
begin

  if z = 0 then
    if N = 0 then
      Exit(1)
    else
      Exit(0);

  zp := z;
  integrand := function(const t: TASC): TASC
    begin
      Result := ccos(N * t - zp * sin(t.Re));
    end;

  Result := integrate(integrand, 0, pi, AParams) / pi;

end;

function Bessel(N: Integer; const z: TASC): TASC;
begin
  Result := Bessel(N, z, DefaultIntegrationParams);
end;

function Laguerre(N: Integer; const X: TASR): TASR;
begin
  if N < 0 then
    raise EMathException.Create('Laguerre polynomial not defined for negative n.');

  // Requires that IntPower(0, 0) = 1
  Result := sum(function(k: Integer): TASR
    begin
      Result := binomial(N, k) * AltSgn(k) * IntPower(X, k) / factorial(k)
    end, 0, N);
end;

function Laguerre(N: Integer; const z: TASC): TASC;
var
  zp: TASC;
begin
  if N < 0 then
    raise EMathException.Create('Laguerre polynomial not defined for negative n.');

  // Requires that IntPower(0, 0) = 1
  zp := z;
  Result := sum(function(k: Integer): TASC
    begin
      Result := binomial(N, k) * AltSgn(k) * cpow(zp, k) / factorial(k)
    end, 0, N);
end;

function Poly(const X: Extended; const Coefficients: array of Double;
  const Degree: Integer): Extended; overload;
var
  I: Integer;
begin
  Result := Coefficients[Degree];
  for I := Degree-1 downto Low(Coefficients) do
    Result := Result * X + Coefficients[I];
end;

function Poly(const z: TASC; const Coefficients: array of Double;
  const Degree: Integer): TASC; overload;
var
  I: Integer;
begin
  Result := Coefficients[Degree];
  for I := Degree-1 downto Low(Coefficients) do
    Result := Result * z + Coefficients[I];
end;

const
  HermiteCoefficients: array[0..10] of array[0..10] of Double =
    (    {    X^0     X^1     X^2     X^3     X^4     X^5     X^6     X^7     X^8     X^9    X^10}
   {N=0} (      1,      0,      0,      0,      0,      0,      0,      0,      0,      0,      0),
   {N=1} (      0,      2,      0,      0,      0,      0,      0,      0,      0,      0,      0),
   {N=2} (     -2,      0,      4,      0,      0,      0,      0,      0,      0,      0,      0),
   {N=3} (      0,    -12,      0,      8,      0,      0,      0,      0,      0,      0,      0),
   {N=4} (     12,      0,    -48,      0,     16,      0,      0,      0,      0,      0,      0),
   {N=5} (      0,    120,      0,   -160,      0,     32,      0,      0,      0,      0,      0),
   {N=6} (   -120,      0,    720,      0,   -480,      0,     64,      0,      0,      0,      0),
   {N=7} (      0,  -1680,      0,   3360,      0,  -1344,      0,    128,      0,      0,      0),
   {N=8} (   1680,      0, -13440,      0,  13440,      0,  -3584,      0,    256,      0,      0),
   {N=9} (      0,  30240,      0, -80640,      0,  48384,      0,  -9216,      0,    512,      0),
  {N=10} ( -30240,      0, 302400,      0,-403200,      0, 161280,      0, -23040,      0,   1024)
    );

function Hermite(N: Integer; const X: TASR): TASR;
begin
  if not InRange(N, Low(HermiteCoefficients), High(HermiteCoefficients)) then
    raise EMathError.Create('Hermite polynomial only implemented for non-negative n ≤ ' + High(HermiteCoefficients).ToString + '.');

  Result := Poly(X, HermiteCoefficients[N], N);
end;

function Hermite(N: Integer; const z: TASC): TASC;
begin
  if not InRange(N, Low(HermiteCoefficients), High(HermiteCoefficients)) then
    raise EMathError.Create('Hermite polynomial only implemented for non-negative n ≤ ' + High(HermiteCoefficients).ToString + '.');

  Result := Poly(z, HermiteCoefficients[N], N);
end;

function Legendre(N: Integer; const X: TASR): TASR;
begin
  if N < 0 then
    raise EMathException.Create('Legendre polynomial not defined for negative n.');

  Result := sum(function(k: Integer): TASR
    begin
      Result := IntPower(binomial(N, k), 2) * IntPower(X - 1, N - k) * IntPower(X + 1, k)
    end, 0, N) / IntPower(2, N);
end;

function Legendre(N: Integer; const z: TASC): TASC;
var
  zp: TASC;
begin
  if N < 0 then
    raise EMathException.Create('Legendre polynomial not defined for negative n.');

  zp := z;
  Result := sum(function(k: Integer): TASC
    begin
      Result := IntPower(binomial(N, k), 2) * cpow(zp - 1, N - k) * cpow(zp + 1, k)
    end, 0, N) / IntPower(2, N);
end;

const
  _gamma_function_p: array[0..7] of TASR =
    (  676.5203681218851,
     -1259.1392167224028,
       771.32342877765313,
      -176.61502916214059,
        12.507343278686905,
        -0.13857109526572012,
         9.9843695780195716E-6,
         1.5056327351493116E-7);

function GammaFunction(const X: TASR): TASR;
// Lanczos approximation as described on
// https://en.wikipedia.org/w/index.php?title=Lanczos_approximation&oldid=773853855
var
  Xp, w, t: TASR;
  i: Integer;
begin

  if (X <= 0) and IsIntegerEx(X) then
    raise EMathException.Create('Gamma function not defined for non-positive integers.');

  if X < 1/2 then
    Exit(pi / (sin(pi*X) * GammaFunction(1 - X)));

  if IsIntegerEx(X) then
    Exit(factorial(round(X) - 1));

  Xp := X - 1;
  w := 0.99999999999980993;
  for i := 0 to High(_gamma_function_p) do
    w := w + _gamma_function_p[i] / (Xp + i + 1);
  t := Xp + Length(_gamma_function_p) - 1/2;

  Result := Sqrt2Pi * Math.Power(t, Xp + 1/2) * exp(-t) * w;

end;

function GammaFunction(const z: TASC): TASC;
var
  Xp, w, t: TASC;
  i: Integer;
begin

  if IsZero(z.Im) and (z.Re <= 0) and IsIntegerEx(z.Re) then
    raise EMathException.Create('Gamma function not defined for non-positive integers.');

  if z.Re < 1/2 then
    Exit(pi / (csin(pi*z) * GammaFunction(1 - z)));

  Xp := z - 1;
  w := 0.99999999999980993;
  for i := 0 to High(_gamma_function_p) do
    w := w + _gamma_function_p[i] / (Xp + i + 1);
  t := Xp + Length(_gamma_function_p) - 1/2;

  Result := Sqrt2Pi * cpow(t, Xp + 1/2) * cexp(-t) * w;

end;

function Chebyshev(N: Integer; const X: TASR): TASR;
begin
  case N of
    0:
      Result := 1;
    1:
      Result := X;
    2:
      Result := 2*X*X - 1;
    3:
      Result := 4*X*X*X - 3*X;
    4:
      Result := 8*X*X*(X*X - 1) + 1;
    5:
      Result := (16*X*X - 20)*X*X*X + 5*X
    else
      if abs(x) <= 1 then
        Result := cos(N * arccos(X))
      else if x >= 1 then
        Result := cosh(N * arccosh(X))
      else
        Result := AltSgn(N) * cosh(N * arccosh(-X));
  end;
end;

function Chebyshev(N: Integer; const z: TASC): TASC;
begin
  case N of
    0:
      Result := 1;
    1:
      Result := z;
    2:
      Result := 2*z*z - 1;
    3:
      Result := 4*z*z*z - 3*z;
    4:
      Result := 8*z*z*(z*z - 1) + 1;
    5:
      Result := (16*z*z - 20)*z*z*z + 5*z
    else
      Result := ccos(N * carccos(z))
  end;
end;

function Bernstein(I, N: Integer; const X: TASR): TASR;
begin
  Result := binomial(N, I) * IntPower(X, I) * IntPower(1 - X, N - I);
end;

function Bernstein(I, N: Integer; const z: TASC): TASC;
begin
  Result := binomial(N, I) * cpow(z, I) * cpow(1 - z, N - I);
end;

var
  MAX_CACHE_THOUSANDS: Integer;
  _harmonic_numbers: array of TASR;

function HarmonicNumber(const N: TASI): TASR;
var
  k: Integer;
  f: Integer;
begin

  if N <= 1000*1000 then
    MAX_CACHE_THOUSANDS := 1000
  else if N <= 10000*1000 then
    MAX_CACHE_THOUSANDS := 10000
  else if N <= 100000*1000 then
    MAX_CACHE_THOUSANDS := 100000
  else if N <= 1001000*1000 then
    MAX_CACHE_THOUSANDS := 1000000
  else
    Exit(EulerMascheroni + Ln(TASR(N)));

  if Length(_harmonic_numbers) < MAX_CACHE_THOUSANDS + 1 then
  begin
    SetLength(_harmonic_numbers, MAX_CACHE_THOUSANDS + 1);
    _harmonic_numbers[0] := 0;
    Result := 0;
    for k := 1 to MAX_CACHE_THOUSANDS * 1000 do
    begin
      Result := Result + 1/k;
      if k mod 1000 = 0 then
        _harmonic_numbers[k div 1000] := Result;
    end;
  end;

  if N < 0 then
    raise EMathException.Create('To compute the Nth harmonic number, N must be a non-negative integer.');

  f := Min(N div 1000, MAX_CACHE_THOUSANDS);
  Result := _harmonic_numbers[f];
  for k := 1000*f + 1 to N do
    Result := Result + 1/k;
end;


{ **************************************************************************** }
{ Real vectors                                                                 }
{ **************************************************************************** }

constructor TRealVector.Create(const Components: array of TASR);
begin
  SetLength(FComponents, Length(Components));
  if Length(Components) > 0 then
    Move(Components[0], FComponents[0], Length(Components) * SizeOf(TASR));
end;

constructor TRealVector.Create(ASize: Integer; const AVal: TASR);
var
  i: Integer;
begin
  if ASize < 0 then
    raise EMathException.Create('Cannot create vector with negative dimension.');
  SetLength(FComponents, ASize);
  for i := 0 to High(FComponents) do
    FComponents[i] := AVal;
end;

function TRealVector.GetDimension: Integer;
begin
  Result := Length(FComponents);
end;

procedure TRealVector.SetDimension(const Value: Integer);
begin
  if Value < 0 then
    raise EMathException.Create('Cannot create vector with negative dimension.');
  SetLength(FComponents, Value);
end;

function TRealVector.GetComponent(Index: Integer): TASR;
begin
  Result := FComponents[Index];
end;

function TRealVector.SafeSort(AComparer: IComparer<TASR>): TRealVector;
begin
  Result := Self;
  if Dimension > 0 then
    TSafeSorter<TASR>.Sort(FComponents, AComparer);
end;

procedure TRealVector.SetComponent(Index: Integer; const Value: TASR);
begin
  FComponents[Index] := Value;
end;

function TRealVector.ToIntegerArray: TArray<Integer>;
var
  i: Integer;
  component: TASR;
begin
  SetLength(Result, Dimension);
  for i := 0 to Dimension - 1 do
  begin
    component := Self[i];
    if IsInteger(component) then
      Result[i] := Round(Component)
    else
      raise EMathException.Create('The vector is not an integer vector.');
  end;
end;

class operator TRealVector.Negative(const u: TRealVector): TRealVector;
var
  i: Integer;
begin
  Result.Dimension := u.Dimension;
  for i := 0 to u.Dimension - 1 do
    Result[i] := -u[i];
end;

class operator TRealVector.Add(const u: TRealVector; const v: TRealVector): TRealVector;
var
  i: Integer;
begin
  if u.Dimension <> v.Dimension then
    raise EMathException.Create('Cannot add two vectors of unequal dimension.');
  Result.Dimension := u.Dimension;
  for i := 0 to u.Dimension - 1 do
    Result[i] := u[i] + v[i];
end;

class operator TRealVector.Add(const u: TRealVector; const x: TASR): TRealVector;
var
  i: Integer;
begin
  Result.Dimension := u.Dimension;
  for i := 0 to u.Dimension - 1 do
    Result[i] := u[i] + x;
end;

class operator TRealVector.Subtract(const u: TRealVector; const v: TRealVector): TRealVector;
var
  i: Integer;
begin
  if u.Dimension <> v.Dimension then
    raise EMathException.Create('Cannot subtract two vectors of unequal dimension.');
  Result.Dimension := u.Dimension;
  for i := 0 to u.Dimension - 1 do
    Result[i] := u[i] - v[i];
end;

class operator TRealVector.Subtract(const u: TRealVector; const x: TASR): TRealVector;
var
  i: Integer;
begin
  Result.Dimension := u.Dimension;
  for i := 0 to u.Dimension - 1 do
    Result[i] := u[i] - x;
end;

class operator TRealVector.Multiply(const u: TRealVector; const v: TRealVector): TASR;
var
  i: Integer;
begin
  if u.Dimension <> v.Dimension then
    raise EMathException.Create('Cannot compute dot product of two vectors of unequal dimension.');
  Result := 0;
  for i := 0 to u.Dimension - 1 do
    Result := Result + u[i] * v[i];
end;

class operator TRealVector.Multiply(const x: TASR; const u: TRealVector): TRealVector;
var
  i: Integer;
begin
  Result.Dimension := u.Dimension;
  for i := 0 to u.Dimension - 1 do
    Result[i] := x * u[i];
end;

class operator TRealVector.Multiply(const u: TRealVector; const x: TASR): TRealVector;
var
  i: Integer;
begin
  Result.Dimension := u.Dimension;
  for i := 0 to u.Dimension - 1 do
    Result[i] := x * u[i];
end;

class operator TRealVector.Divide(const u: TRealVector; const x: TASR): TRealVector;
var
  i: Integer;
begin
  Result.Dimension := u.Dimension;
  for i := 0 to u.Dimension - 1 do
    Result[i] := u[i] / x;
end;

class operator TRealVector.Equal(const u: TRealVector; const v: TRealVector): Boolean;
var
  i: Integer;
begin

  Result := u.Dimension = v.Dimension;
  if Result then
    for i := 0 to u.Dimension - 1 do
      if u[i] <> v[i] then
        Exit(False);

// Notice that we CANNOT do
//   Result := (u.Dimension = v.Dimension) and CompareMem(u.Data, v.Data, u.Dimension * SizeOf(TASR));
// because of negative 0.

end;

class operator TRealVector.NotEqual(const u: TRealVector; const v: TRealVector): Boolean;
begin
  Result := not (u = v);
end;

class operator TRealVector.LeftShift(const u: TRealVector; Val: Integer): TRealVector;
var
  i: Integer;
begin
  if Val < 0 then Exit(u shr -Val);
  Result.Dimension := u.Dimension;
  for i := 0 to Result.Dimension - 1 do
    Result[i] := u[(i+Val) mod u.Dimension];
end;

class operator TRealVector.RightShift(const u: TRealVector; Val: Integer): TRealVector;
var
  i: Integer;
begin
  if Val < 0 then Exit(u shl -Val);
  Result.Dimension := u.Dimension;
  for i := 0 to Result.Dimension - 1 do
    Result[(i+Val) mod Result.Dimension] := u[i];
end;

class operator TRealVector.Trunc(const u: TRealVector): TRealVector;
begin
  Result := u.Apply(function(const X: TASR): TASR begin Result := System.Trunc(X) end);
end;

class operator TRealVector.Round(const u: TRealVector): TRealVector;
begin
  Result := u.Apply(function(const X: TASR): TASR begin Result := System.Round(X) end);
end;

class operator TRealVector.LessThan(const u, v: TRealVector): Boolean;
begin
  Result := (v - u).IsPositive;
end;

class operator TRealVector.LessThanOrEqual(const u, v: TRealVector): Boolean;
begin
  Result := (v - u).IsNonNegative;
end;

class operator TRealVector.GreaterThan(const u, v: TRealVector): Boolean;
begin
  Result := (u - v).IsPositive;
end;

class operator TRealVector.GreaterThanOrEqual(const u, v: TRealVector): Boolean;
begin
  Result := (u - v).IsNonNegative;
end;

function TRealVector.IsZeroVector(const Epsilon: Extended): Boolean;
var
  i: Integer;
begin
  for i := 0 to Dimension - 1 do
    if not IsZero(FComponents[i], Epsilon) then
      Exit(False);
  Result := True;
end;

procedure TRealVector.Normalize;
var
  _norm: TASR;
  i: Integer;
begin
  _norm := Norm;
  if IsZero(_norm) then
    raise EMathException.Create('Cannot normalize the zero vector.');
  for i := 0 to Dimension - 1 do
    FComponents[i] := FComponents[i] / _norm;
end;

function TRealVector.Normalized: TRealVector;
var
  _norm: TASR;
  i: Integer;
begin
  _norm := Norm;
  if IsZero(_norm) then
    raise EMathException.Create('Cannot normalize the zero vector.');
  Result.Dimension := Dimension;
  for i := 0 to Dimension - 1 do
    Result[i] := Self[i] / _norm;
end;

function TRealVector.NormalizedIfNonzero: TRealVector;
var
  _norm: TASR;
  i: Integer;
begin
  _norm := Norm;
  if IsZero(_norm) then
    Exit(Clone);

  Result.Dimension := Dimension;
  for i := 0 to Dimension - 1 do
    Result[i] := Self[i] / _norm;
end;

procedure TRealVector.NormalizeIfNonzero;
var
  _norm: TASR;
  i: Integer;
begin
  _norm := Norm;
  if not IsZero(_norm) then
    for i := 0 to Dimension - 1 do
      FComponents[i] := FComponents[i] / _norm;
end;

function TRealVector.Norm: TASR;
begin
  Result := Sqrt(Self * Self);
end;

function TRealVector.NormSqr: TASR;
begin
  Result := Self * Self;
end;

function TRealVector.pNorm(const p: TASR): TASR;
var
  i: Integer;
begin
  if p = 1 then
    Exit(SumNorm);
  if IsInfinite(p) and (Sign(p) = 1) then
    Exit(MaxNorm);

  Result := 0;
  for i := 0 to Dimension - 1 do
    Result := Result + Math.Power(System.Abs(Components[i]), p);
  Result := Math.Power(Result, 1/p);
end;

function TRealVector.MaxNorm: TASR;
begin
  Result := max(Self.Abs());
end;

function TRealVector.SumNorm: TASR;
begin
  Result := sum(Self.Abs());
end;

procedure TRealVector.Swap(AIndex1, AIndex2: Integer);
begin
  TSwapper<TASR>.Swap(FComponents[AIndex1], FComponents[AIndex2]);
end;

function TRealVector.kNorm(k: Integer): TASR;
begin
  Result := sum(Abs.Sort(TASRComparer.StandardOrderDescending).TruncateAt(Min(k, Dimension)));
end;

function TRealVector.IsPositive(const Epsilon: Extended): Boolean;
var
  i: Integer;
begin
  for i := 0 to Self.Dimension - 1 do
    if (Data[i] < 0) or IsZero(Data[i], Epsilon) then
      Exit(False);
  Result := True;
end;

function TRealVector.IsNonNegative(const Epsilon: Extended): Boolean;
var
  i: Integer;
begin
  for i := 0 to Self.Dimension - 1 do
    if (Data[i] < 0) and not IsZero(Data[i], Epsilon) then
      Exit(False);
  Result := True;
end;

procedure TRealVector.Insert(AIndex: Integer; const AValue: TASR);
begin
  TArrInserter<TASR>.Insert(FComponents, AIndex, AValue);
end;

function TRealVector.IsNegative(const Epsilon: Extended): Boolean;
var
  i: Integer;
begin
  for i := 0 to Self.Dimension - 1 do
    if (Data[i] > 0) or IsZero(Data[i], Epsilon) then
      Exit(False);
  Result := True;
end;

function TRealVector.IsNonPositive(const Epsilon: Extended): Boolean;
var
  i: Integer;
begin
  for i := 0 to Self.Dimension - 1 do
    if (Data[i] > 0) and not IsZero(Data[i], Epsilon) then
      Exit(False);
  Result := True;
end;

function TRealVector.Abs: TRealVector;
var
  i: Integer;
begin
  Result.Dimension := Dimension;
  for i := 0 to Result.Dimension - 1 do
    Result[i] := System.Abs(Self[i]);
end;

function TRealVector.TruncateAt(ALength: Integer): TRealVector;
begin
  if not InRange(ALength, 1, Dimension) then
    raise EMathException.Create('Cannot truncate vector at this index.');
  Result := Clone;
  Result.Dimension := ALength;
end;

function TRealVector.Reduce(AStep: Integer): TRealVector;
var
  i: Integer;
begin
  if AStep < 1 then
    raise EMathException.Create('Cannot reduce vector using a non-positive step.');

  Result.Dimension := Ceil(Self.Dimension / AStep);
  for i := 0 to Result.Dimension - 1 do
    Result[i] := Self[i * AStep];
end;

procedure TRealVector.Remove(const AIndices: array of Integer);
begin
  TRemover<TASR>.Remove(FComponents, AIndices);
end;

procedure TRealVector.RemoveFirst(N: Integer);
begin
  TRemover<TASR>.RemoveFirst(FComponents, N);
end;

function TRealVector.Clone: TRealVector;
begin
  Result.Dimension := Dimension;
  if Dimension > 0 then
    Move(Self.Data[0], Result.Data[0], Result.Dimension * SizeOf(TASR));
end;

function TRealVector.Subvector(AFrom, ATo: Integer): TRealVector;
begin
  AFrom := EnsureRange(AFrom, 0, Dimension - 1);
  ATo := EnsureRange(ATo, 0, Dimension - 1);
  Result.Dimension := ATo - AFrom + 1;
  if Result.Dimension > 0 then
    Move(Self.Data[AFrom], Result.Data[0], Result.Dimension * SizeOf(TASR));
end;

function TRealVector.Subvector(const AIndices: array of Integer): TRealVector;
var
  i: Integer;
begin
  Result.Dimension := Length(AIndices);
  for i := 0 to High(AIndices) do
    if InRange(AIndices[i], 0, Dimension - 1) then
      Result[i] := Self[AIndices[i]]
    else
      raise EMathException.Create('Invalid subvector specification.');
end;

function TRealVector.Sort: TRealVector;
begin
  Result := Self;
  if Dimension > 0 then
    TArray.Sort<TASR>(FComponents);
end;

function TRealVector.Sort(AComparer: IComparer<TASR>): TRealVector;
begin
  Result := Self;
  if Dimension > 0 then
    TArray.Sort<TASR>(FComponents, AComparer);
end;

function TRealVector.ReverseSort: TRealVector;
begin
  Result := Sort(TASRComparer.StandardOrderDescending);
end;

function TRealVector.Shuffle: TRealVector;
begin
  TShuffler<TASR>.Shuffle(TArray<TASR>(FComponents));
  Result := Self;
end;

function TRealVector.Unique: TRealVector;
var
  i, j: Integer;
  Dict: TDictionary<TASR, pointer>;
begin
  Result.Dimension := Dimension;
  j := 0;
  Dict := TDictionary<TASR, pointer>.Create;
  try
    for i := 0 to Dimension - 1 do
    begin
      if not Dict.ContainsKey(Self[i]) then
      begin
        Result[j] := Self[i];
        Inc(j);
        Dict.Add(Self[i], nil);
      end;
    end;
    Result.Dimension := j;
  finally
    Dict.Free;
  end;
end;

function TRealVector.UniqueAdj: TRealVector;
var
  i, j: Integer;
begin

  Result.Dimension := Dimension;
  if Result.Dimension = 0 then Exit;

  Result[0] := Self[0];
  j := 1;
  for i := 1 to Dimension - 1 do
    if Self[i] <> Result[j-1] then
    begin
      Result[j] := Self[i];
      Inc(j);
    end;

  Result.Dimension := j;

end;

function TRealVector.UniqueEps(const Epsilon: TASR): TRealVector;
var
  i, j: Integer;
begin
  Result.Dimension := Dimension;
  j := 0;
  for i := 0 to Dimension - 1 do
    if not contains(Result, Self[i], Epsilon, j) then
    begin
      Result[j] := Self[i];
      Inc(j);
    end;
  Result.Dimension := j;
end;

function TRealVector.UniqueAdjEps(const Epsilon: TASR): TRealVector;
var
  i, j: Integer;
begin

  Result.Dimension := Dimension;
  if Result.Dimension = 0 then Exit;

  Result[0] := Self[0];
  j := 1;
  for i := 1 to Dimension - 1 do
    if not SameValue(Self[i], Result[j-1], Epsilon) then
    begin
      Result[j] := Self[i];
      Inc(j);
    end;

  Result.Dimension := j;

end;

function TRealVector.Reverse: TRealVector;
begin
  Result := Self;
  TReverser<TASR>.Reverse(TArray<TASR>(FComponents));
end;

procedure TRealVector.Append(const AValue: TASR);
begin
  TArrBuilder<TASR>.Add(FComponents, AValue);
end;

function TRealVector.Apply(AFunction: TRealFunctionRef): TRealVector;
var
  i: Integer;
begin
  Result.Dimension := Dimension;
  for i := 0 to Dimension - 1 do
    Result[i] := AFunction(Self[i]);
end;

procedure TRealVector.ExtendWith(const AValue: TRealVector);
begin
  TArrExtender<TASR>.Extend(FComponents, AValue.FComponents);
end;

function TRealVector.Filter(APredicate: TPredicate<TASR>): TRealVector;
var
  ActualLength: Integer;
  i: Integer;
begin
  Result.Dimension := Dimension;
  ActualLength := 0;
  for i := 0 to Dimension - 1 do
    if APredicate(Self[i]) then
    begin
      Result[ActualLength] := Self[i];
      Inc(ActualLength);
    end;
  Result.Dimension := ActualLength;
end;

function TRealVector.Replace(APredicate: TPredicate<TASR>; const ANewValue: TASR): TRealVector;
var
  i: Integer;
begin
  Result := Clone;
  for i := 0 to Result.Dimension - 1 do
    if APredicate(Result[i]) then
      Result[i] := ANewValue;
end;

function TRealVector.Replace(const AOldValue, ANewValue: TASR; const Epsilon: Extended = 0): TRealVector;
var
  i: Integer;
begin
  Result := Clone;
  for i := 0 to Result.Dimension - 1 do
    if SameValueEx(Result[i], AOldValue, Epsilon) then
      Result[i] := ANewValue;
end;

function TRealVector.Replace(const ANewValue: TASR): TRealVector;
begin
  Result := TRealVector.Create(Dimension, ANewValue);
end;

function TRealVector.Defuzz(const Eps: Double): TRealVector;
var
  i: Integer;
begin
  Result := Self;
  for i := 0 to Dimension - 1 do
    if IsInteger(FComponents[i], Eps) then
      FComponents[i] := Round(FComponents[i]);
end;

function TRealVector.str(const AOptions: TFormatOptions): string;
var
  i: Integer;
begin
  Result := '(';
  if Length(FComponents) > 0 then
    Result := Result + RealToStr(FComponents[0], AOptions);
  for i := 1 to High(FComponents) do
    Result := Result + ', ' + RealToStr(FComponents[i], AOptions);
  Result := Result + ')';
end;

function ASC(const u: TRealVector): TASC; inline;
begin
  Result.Re := u[0];
  Result.Im := u[1];
end;

function ASR2(const u1, u2: TASR): TRealVector; inline;
begin
  Result := TRealVector.Create([u1, u2]);
end;

function ASR2(const z: TASC): TRealVector; inline;
begin
  Result := ASR2(z.Re, z.Im);
end;

function ASR3(const u1, u2, u3: TASR): TRealVector; inline;
begin
  Result := TRealVector.Create([u1, u2, u3]);
end;

function ASR4(const u1, u2, u3, u4: TASR): TRealVector; inline;
begin
  Result := TRealVector.Create([u1, u2, u3, u4]);
end;

function ASR5(const u1, u2, u3, u4, u5: TASR): TRealVector; inline;
begin
  Result := TRealVector.Create([u1, u2, u3, u4, u5]);
end;

function ZeroVector(const Dimension: Integer): TRealVector;
begin
  Result := TRealVector.Create(Dimension, 0);
end;

function RandomVector(const Dimension: Integer): TRealVector;
var
  i: Integer;
begin
  Result.Dimension := Dimension;
  for i := 0 to Dimension - 1 do
    Result[i] := Random;
end;

function RandomIntVector(const Dimension, A, B: Integer): TRealVector;
var
  i: Integer;
begin
  Result.Dimension := Dimension;
  for i := 0 to Dimension - 1 do
    Result[i] := RandomRange(A, B);
end;

function RandomVectorWithSigns(const Dimension: Integer): TRealVector;
var
  i: Integer;
begin
  Result.Dimension := Dimension;
  for i := 0 to Dimension - 1 do
    Result[i] := 2*Random - 1;
end;

function SequenceVector(ALen: Integer; AStart: TASR = 1; AStep: TASR = 1): TRealVector;
var
  val: TASR;
  i: Integer;
begin
  Result.Dimension := ALen;
  val := AStart;
  for i := 0 to Result.Dimension - 1 do
  begin
    Result[i] := val;
    val := val + AStep;
  end;
end;

function UnitVector(ADim, AIndex: Integer): TRealVector;
begin
  Result := ZeroVector(ADim);
  if InRange(AIndex, 0, ADim - 1) then
    Result[AIndex] := 1
  else
    raise EMathException.Create('Invalid unit vector index.');
end;

function SameVector(const u, v: TRealVector; const Epsilon: Extended = 0): Boolean;
var
  i: Integer;
begin

  if u.Dimension <> v.Dimension then
    Exit(False);

  for i := 0 to u.Dimension - 1 do
    if not SameValue(u[i], v[i], Epsilon) then
      Exit(False);

  Result := True;

end;

function SameVectorEx(const u, v: TRealVector; const Epsilon: Extended = 0): Boolean;
var
  i: Integer;
begin

  if u.Dimension <> v.Dimension then
    Exit(False);

  for i := 0 to u.Dimension - 1 do
    if not SameValueEx(u[i], v[i], Epsilon) then
      Exit(False);

  Result := True;

end;

function AreParallel(const u, v: TRealVector; Epsilon: Extended = 0): Boolean;
var
  factor: TASR;
  i: Integer;
  un, vn: TRealVector;
begin
  if Epsilon = 0 then
    Epsilon := 1E-12;
  if u.Dimension <> v.Dimension then
    raise EMathException.Create('Vectors are of different dimension.');
  if u.IsZeroVector(Epsilon) or v.IsZeroVector(Epsilon) then
    Exit(True);
  un := u.Normalized;
  vn := v.Normalized;
  factor := 0;
  for i := 0 to un.Dimension - 1 do
    if not IsZero(un[i], Epsilon) and not IsZero(vn[i], Epsilon) then
    begin
      factor := vn[i] / un[i];
      Break;
    end;
  if factor = 0 then
    Exit(False);
  for i := 0 to un.Dimension - 1 do
    if not SameValue(factor * un[i], vn[i], Epsilon) then
      Exit(False);
  Result := True;
end;

function ArePerpendicular(const u, v: TRealVector; const Epsilon: Extended = 0): Boolean;
begin
  Result := IsZero(u * v, Epsilon);
end;

function accumulate(const u: TRealVector; const AStart: TASR; AFunc: TAccumulator<TASR>): TASR;
var
  i: Integer;
begin
  Result := AStart;
  for i := 0 to u.Dimension - 1 do
    Result := AFunc(Result, u[i]);
end;

function sum(const u: TRealVector): TASR;
begin
  Result := accumulate(u, 0, ASR_PLUS);
end;

function ArithmeticMean(const u: TRealVector): TASR;
begin
  Result := sum(u) / u.Dimension;
end;

function GeometricMean(const u: TRealVector): TASR;
var
  p: TASR;
begin
  p := 1 / u.Dimension;
  Result := { pow(product(u), 1 / u.Dimension) = }
            product(u.Apply(function(const X: TASR): TASR
              begin
                Result := pow(X, p);
              end));
end;

function HarmonicMean(const u: TRealVector): TASR;
begin
  Result := 1 / ArithmeticMean(u.Apply(inv));
end;

function product(const u: TRealVector): TASR;
begin
  Result := accumulate(u, 1, ASR_TIMES);
end;

function max(const u: TRealVector): TASR;
var
  i: Integer;
begin
  if u.Dimension = 0 then
    raise EMathException.Create('Cannot find maximum component in a vector of dimension 0.');
  Result := u[0];
  for i := 1 to u.Dimension - 1 do
    if u[i] > Result then
      Result := u[i];
end;

function min(const u: TRealVector): TASR;
var
  i: Integer;
begin
  if u.Dimension = 0 then
    raise EMathException.Create('Cannot find minimum component in a vector of dimension 0.');
  Result := u[0];
  for i := 1 to u.Dimension - 1 do
    if u[i] < Result then
      Result := u[i];
end;

function exists(const u: TRealVector; APredicate: TPredicate<TASR>): Boolean; overload;
var
  i: Integer;
begin
  Result := False;
  for i := 0 to u.Dimension - 1 do
    if APredicate(u[i]) then
      Exit(true);
end;

function count(const u: TRealVector; APredicate: TPredicate<TASR>): Integer; overload;
var
  i: Integer;
begin
  Result := 0;
  for i := 0 to u.Dimension - 1 do
    if APredicate(u[i]) then
      Inc(Result);
end;

function count(const u: TRealVector; const AValue: TASR): Integer; overload;
var
  i: Integer;
begin
  Result := 0;
  for i := 0 to u.Dimension - 1 do
    if SameValue(u[i], AValue) then
      Inc(Result);
end;

function ForAll(const u: TRealVector; APredicate: TPredicate<TASR>): Boolean; overload;
var
  i: Integer;
begin
  for i := 0 to u.Dimension - 1 do
    if not APredicate(u[i]) then
      Exit(False);
  Result := True;
end;

function contains(const u: TRealVector; const AValue: TASR;
  const AEpsilon: TASR; ALen: Integer): Boolean; overload;
var
  i: Integer;
begin
  if ALen = -1 then
    ALen := u.Dimension;
  for i := 0 to ALen - 1 do
    if SameValue(u[i], AValue, AEpsilon) then
      Exit(True);
  Result := False;
end;

function CrossProduct(const u, v: TRealVector): TRealVector;
begin

  if (u.Dimension <> 3) or (v.Dimension <> 3) then
    raise EMathException.Create('Vector cross product only defined in ℝ³.');

  Result.Dimension := 3;
  Result[0] := u[1] * v[2] - u[2] * v[1];
  Result[1] := u[2] * v[0] - u[0] * v[2];
  Result[2] := u[0] * v[1] - u[1] * v[0];

end;

function angle(const u, v: TRealVector): TASR;
begin

  if not (u.Dimension = v.Dimension) then
    raise EMathException.Create('Cannot compute angle between vectors of different dimension.');

  var unorm := u.Norm;
  var vnorm := v.Norm;

  if (unorm = 0.0) or (vnorm = 0.0) then
    raise EMathException.Create('Cannot compute angle to the zero vector.');

  var alpha := (u / unorm) * (v / vnorm);

  if SameValue(alpha, 1.0) then // dy/dx = -infty
    Result := 0.0
  else if SameValue(alpha, -1.0) then // dy/dx = -infty
    Result := Pi
  else
    Result := arccos(alpha);

end;

function VectConcat(const u, v: TRealVector): TRealVector; overload;
begin
  Result.Dimension := u.Dimension + v.Dimension;
  if u.Dimension > 0 then
    VectMove(u, 0, u.Dimension - 1, Result);
  if v.Dimension > 0 then
    VectMove(v, 0, v.Dimension - 1, Result, u.Dimension);
end;


{ **************************************************************************** }
{ Complex vectors                                                              }
{ **************************************************************************** }

constructor TComplexVector.Create(const Components: array of TASC);
begin
  SetLength(FComponents, Length(Components));
  if Length(Components) > 0 then
    Move(Components[0], FComponents[0], Length(Components) * SizeOf(TASC));
end;

constructor TComplexVector.Create(ASize: Integer; const AVal: TASC);
var
  i: Integer;
begin
  if ASize < 0 then
    raise EMathException.Create('Cannot create vector with negative dimension.');
  SetLength(FComponents, ASize);
  for i := 0 to High(FComponents) do
    FComponents[i] := AVal;
end;

function TComplexVector.GetDimension: Integer;
begin
  Result := Length(FComponents);
end;

procedure TComplexVector.SetDimension(const Value: Integer);
begin
  if Value < 0 then
    raise EMathException.Create('Cannot create vector with negative dimension.');
  SetLength(FComponents, Value);
end;

function TComplexVector.GetComponent(Index: Integer): TASC;
begin
  Result := FComponents[Index];
end;

function TComplexVector.SafeSort(AComparer: IComparer<TASC>): TComplexVector;
begin
  Result := Self;
  if Dimension > 0 then
    TSafeSorter<TASC>.Sort(FComponents, AComparer);
end;

procedure TComplexVector.SetComponent(Index: Integer; const Value: TASC);
begin
  FComponents[Index] := Value;
end;

class operator TComplexVector.Implicit(const u: TRealVector): TComplexVector;
var
  i: Integer;
begin
  Result.Dimension := u.Dimension;
  for i := 0 to u.Dimension - 1 do
    Result[i] := u[i];
end;

procedure TComplexVector.Insert(AIndex: Integer; const AValue: TASC);
begin
  TArrInserter<TASC>.Insert(FComponents, AIndex, AValue);
end;

class operator TComplexVector.Negative(const u: TComplexVector): TComplexVector;
var
  i: Integer;
begin
  Result.Dimension := u.Dimension;
  for i := 0 to u.Dimension - 1 do
    Result[i] := -u[i];
end;

class operator TComplexVector.Add(const u: TComplexVector; const v: TComplexVector): TComplexVector;
var
  i: Integer;
begin
  if u.Dimension <> v.Dimension then
    raise EMathException.Create('Cannot add two vectors of unequal dimension.');
  Result.Dimension := u.Dimension;
  for i := 0 to u.Dimension - 1 do
    Result[i] := u[i] + v[i];
end;

class operator TComplexVector.Add(const u: TComplexVector; const z: TASC): TComplexVector;
var
  i: Integer;
begin
  Result.Dimension := u.Dimension;
  for i := 0 to u.Dimension - 1 do
    Result[i] := u[i] + z;
end;

class operator TComplexVector.Subtract(const u: TComplexVector; const v: TComplexVector): TComplexVector;
var
  i: Integer;
begin
  if u.Dimension <> v.Dimension then
    raise EMathException.Create('Cannot subtract two vectors of unequal dimension.');
  Result.Dimension := u.Dimension;
  for i := 0 to u.Dimension - 1 do
    Result[i] := u[i] - v[i];
end;

class operator TComplexVector.Subtract(const u: TComplexVector; const z: TASC): TComplexVector;
var
  i: Integer;
begin
  Result.Dimension := u.Dimension;
  for i := 0 to u.Dimension - 1 do
    Result[i] := u[i] - z;
end;

class operator TComplexVector.Multiply(const u: TComplexVector; const v: TComplexVector): TASC;
var
  i: Integer;
begin
  if u.Dimension <> v.Dimension then
    raise EMathException.Create('Cannot compute dot product of two vectors of unequal dimension.');
  Result := 0;
  for i := 0 to u.Dimension - 1 do
    Result := Result + u[i] * v[i].Conjugate;
end;

class operator TComplexVector.Multiply(const z: TASC; const u: TComplexVector): TComplexVector;
var
  i: Integer;
begin
  Result.Dimension := u.Dimension;
  for i := 0 to u.Dimension - 1 do
    Result[i] := z * u[i];
end;

class operator TComplexVector.Multiply(const u: TComplexVector; const z: TASC): TComplexVector;
var
  i: Integer;
begin
  Result.Dimension := u.Dimension;
  for i := 0 to u.Dimension - 1 do
    Result[i] := z * u[i];
end;

class operator TComplexVector.Divide(const u: TComplexVector; const z: TASC): TComplexVector;
var
  i: Integer;
begin
  Result.Dimension := u.Dimension;
  for i := 0 to u.Dimension - 1 do
    Result[i] := u[i] / z;
end;

class operator TComplexVector.Equal(const u: TComplexVector; const v: TComplexVector): Boolean;
var
  i: Integer;
begin
  Result := u.Dimension = v.Dimension;
  if Result then
    for i := 0 to u.Dimension - 1 do
      if u[i] <> v[i] then
        Exit(False);

// Notice that we CANNOT do
//   Result := (u.Dimension = v.Dimension) and CompareMem(u.Data, v.Data, u.Dimension * SizeOf(TASC));
// because the TASC record isn't packed, and because of negative 0.
end;

class operator TComplexVector.NotEqual(const u: TComplexVector; const v: TComplexVector): Boolean;
begin
  Result := not (u = v);
end;

class operator TComplexVector.LeftShift(const u: TComplexVector; Val: Integer): TComplexVector;
var
  i: Integer;
begin
  if Val < 0 then Exit(u shr -Val);
  Result.Dimension := u.Dimension;
  for i := 0 to Result.Dimension - 1 do
    Result[i] := u[(i+Val) mod u.Dimension];
end;

class operator TComplexVector.RightShift(const u: TComplexVector; Val: Integer): TComplexVector;
var
  i: Integer;
begin
  if Val < 0 then Exit(u shl -Val);
  Result.Dimension := u.Dimension;
  for i := 0 to Result.Dimension - 1 do
    Result[(i+Val) mod Result.Dimension] := u[i];
end;

class operator TComplexVector.Round(const u: TComplexVector): TComplexVector;
begin
  Result := u.Apply(function(const X: TASC): TASC begin Result := Round(X) end);
end;

function TComplexVector.IsReal: Boolean;
var
  i: Integer;
begin
  for i := 0 to Dimension - 1 do
    if not FComponents[i].IsReal then
      Exit(False);
  Result := True;
end;

function TComplexVector.IsZeroVector(const Epsilon: Extended = 0): Boolean;
var
  i: Integer;
begin
  for i := 0 to Dimension - 1 do
    if not CIsZero(FComponents[i], Epsilon) then
      Exit(False);
  Result := True;
end;

function TComplexVector.kNorm(k: Integer): TASR;
begin
  Result := sum(Abs.Sort(TASRComparer.StandardOrderDescending).TruncateAt(Min(k, Dimension)));
end;

procedure TComplexVector.Normalize;
var
  _norm: TASR;
  i: Integer;
begin
  _norm := Norm;
  if IsZero(_norm) then
    raise EMathException.Create('Cannot normalize the zero vector.');
  for i := 0 to Dimension - 1 do
    FComponents[i] := FComponents[i] / _norm;
end;

function TComplexVector.Normalized: TComplexVector;
var
  _norm: TASR;
  i: Integer;
begin
  _norm := Norm;
  if IsZero(_norm) then
    raise EMathException.Create('Cannot normalize the zero vector.');
  Result.Dimension := Dimension;
  for i := 0 to Dimension - 1 do
    Result[i] := Self[i] / _norm;
end;

function TComplexVector.NormalizedIfNonzero: TComplexVector;
var
  _norm: TASR;
  i: Integer;
begin
  _norm := Norm;
  if IsZero(_norm) then
    Exit(Clone);

  Result.Dimension := Dimension;
  for i := 0 to Dimension - 1 do
    Result[i] := Self[i] / _norm;
end;

procedure TComplexVector.NormalizeIfNonzero;
var
  _norm: TASR;
  i: Integer;
begin
  _norm := Norm;
  if not IsZero(_norm) then
    for i := 0 to Dimension - 1 do
      FComponents[i] := FComponents[i] / _norm;
end;

function TComplexVector.Norm: TASR;
begin
  Result := Sqrt((Self * Self).Re);
end;

function TComplexVector.NormSqr: TASR;
begin
  Result := (Self * Self).Re;
end;

function TComplexVector.pNorm(const p: TASR): TASR;
var
  i: Integer;
begin
  if p = 1 then
    Exit(SumNorm);
  if p = Infinity then
    Exit(MaxNorm);

  Result := 0;
  for i := 0 to Dimension - 1 do
    Result := Result + Math.Power(Components[i].Modulus, p);
  Result := Math.Power(Result, 1/p);
end;

function TComplexVector.MaxNorm: TASR;
begin
  Result := max(Self.Abs());
end;

function TComplexVector.SumNorm: TASR;
begin
  Result := sum(Self.Abs());
end;

procedure TComplexVector.Swap(AIndex1, AIndex2: Integer);
begin
  TSwapper<TASC>.Swap(FComponents[AIndex1], FComponents[AIndex2]);
end;

function TComplexVector.Abs: TRealVector;
var
  i: Integer;
begin
  Result.Dimension := Dimension;
  for i := 0 to Result.Dimension - 1 do
    Result[i] := Self[i].Modulus;
end;

function TComplexVector.TruncateAt(ALength: Integer): TComplexVector;
begin
  if not InRange(ALength, 1, Dimension) then
    raise EMathException.Create('Cannot truncate vector at this index.');
  Result := Clone;
  Result.Dimension := ALength;
end;

function TComplexVector.Reduce(AStep: Integer): TComplexVector;
var
  i: Integer;
begin
  if AStep < 1 then
    raise EMathException.Create('Cannot reduce vector using a non-positive step.');

  Result.Dimension := Ceil(Dimension / AStep);
  for i := 0 to Result.Dimension - 1 do
    Result[i] := Self[i * AStep];
end;

procedure TComplexVector.Remove(const AIndices: array of Integer);
begin
  TRemover<TASC>.Remove(FComponents, AIndices);
end;

procedure TComplexVector.RemoveFirst(N: Integer);
begin
  TRemover<TASC>.RemoveFirst(FComponents, N);
end;

function TComplexVector.Clone: TComplexVector;
begin
  Result.Dimension := Dimension;
  if Dimension > 0 then
    Move(Self.Data[0], Result.Data[0], Result.Dimension * SizeOf(TASC));
end;

function TComplexVector.Subvector(AFrom, ATo: Integer): TComplexVector;
begin
  AFrom := EnsureRange(AFrom, 0, Dimension - 1);
  ATo := EnsureRange(ATo, 0, Dimension - 1);
  Result.Dimension := ATo - AFrom + 1;
  if Result.Dimension > 0 then
    Move(Self.Data[AFrom], Result.Data[0], Result.Dimension * SizeOf(TASC));
end;

function TComplexVector.Subvector(const AIndices: array of Integer): TComplexVector;
var
  i: Integer;
begin
  Result.Dimension := Length(AIndices);
  for i := 0 to High(AIndices) do
    if InRange(AIndices[i], 0, Dimension - 1) then
      Result[i] := Self[AIndices[i]]
    else
      raise EMathException.Create('Invalid subvector specification.');
end;

function TComplexVector.Sort(AComparer: IComparer<TASC>): TComplexVector;
begin
  Result := Self;
  if Dimension > 0 then
    TArray.Sort<TASC>(FComponents, AComparer);
end;

function TComplexVector.Shuffle: TComplexVector;
begin
  TShuffler<TASC>.Shuffle(TArray<TASC>(FComponents));
  Result := Self;
end;

function TComplexVector.Unique: TComplexVector;
var
  i, j: Integer;
  Dict: TDictionary<TASC, pointer>;
begin
  Result.Dimension := Dimension;
  j := 0;
  Dict := TDictionary<TASC, pointer>.Create;
  try
    for i := 0 to Dimension - 1 do
    begin
      if not Dict.ContainsKey(Self[i]) then
      begin
        Result[j] := Self[i];
        Inc(j);
        Dict.Add(Self[i], nil);
      end;
    end;
    Result.Dimension := j;
  finally
    Dict.Free;
  end;
end;

function TComplexVector.UniqueAdj: TComplexVector;
var
  i, j: Integer;
begin

  Result.Dimension := Dimension;
  if Result.Dimension = 0 then Exit;

  Result[0] := Self[0];
  j := 1;
  for i := 1 to Dimension - 1 do
    if Self[i] <> Result[j-1] then
    begin
      Result[j] := Self[i];
      Inc(j);
    end;

  Result.Dimension := j;

end;

function TComplexVector.UniqueEps(const Epsilon: TASR): TComplexVector;
var
  i, j: Integer;
begin
  Result.Dimension := Dimension;
  j := 0;
  for i := 0 to Dimension - 1 do
    if not contains(Result, Self[i], Epsilon, j) then
    begin
      Result[j] := Self[i];
      Inc(j);
    end;
  Result.Dimension := j;
end;

function TComplexVector.UniqueAdjEps(const Epsilon: TASR): TComplexVector;
var
  i, j: Integer;
begin

  Result.Dimension := Dimension;
  if Result.Dimension = 0 then Exit;

  Result[0] := Self[0];
  j := 1;
  for i := 1 to Dimension - 1 do
    if not CSameValue(Self[i], Result[j-1], Epsilon) then
    begin
      Result[j] := Self[i];
      Inc(j);
    end;

  Result.Dimension := j;

end;

function TComplexVector.Reverse: TComplexVector;
begin
  Result := Self;
  TReverser<TASC>.Reverse(TArray<TASC>(FComponents));
end;

procedure TComplexVector.Append(const AValue: TASC);
begin
  TArrBuilder<TASC>.Add(FComponents, AValue);
end;

function TComplexVector.Apply(AFunction: TComplexFunctionRef): TComplexVector;
var
  i: Integer;
begin
  Result.Dimension := Dimension;
  for i := 0 to Dimension - 1 do
    Result[i] := AFunction(Self[i]);
end;

procedure TComplexVector.ExtendWith(const AValue: TComplexVector);
begin
  TArrExtender<TASC>.Extend(FComponents, AValue.FComponents);
end;

function TComplexVector.Filter(APredicate: TPredicate<TASC>): TComplexVector;
var
  ActualLength: Integer;
  i: Integer;
begin
  Result.Dimension := Dimension;
  ActualLength := 0;
  for i := 0 to Dimension - 1 do
    if APredicate(Self[i]) then
    begin
      Result[ActualLength] := Self[i];
      Inc(ActualLength);
    end;
  Result.Dimension := ActualLength;
end;

function TComplexVector.Replace(APredicate: TPredicate<TASC>;
  const ANewValue: TASC): TComplexVector;
var
  i: Integer;
begin
  Result := Clone;
  for i := 0 to Result.Dimension - 1 do
    if APredicate(Result[i]) then
      Result[i] := ANewValue;
end;

function TComplexVector.Replace(const AOldValue, ANewValue: TASC;
  const Epsilon: Extended = 0): TComplexVector;
var
  i: Integer;
begin
  Result := Clone;
  for i := 0 to Result.Dimension - 1 do
    if CSameValueEx(Result[i], AOldValue, Epsilon) then
      Result[i] := ANewValue;
end;

function TComplexVector.Replace(const ANewValue: TASC): TComplexVector;
begin
  Result := TComplexVector.Create(Dimension, ANewValue);
end;

function TComplexVector.RealPart: TRealVector;
var
  i: Integer;
begin
  Result.Dimension := Dimension;
  for i := 0 to Dimension - 1 do
    Result.Data[i] := Data[i].Re;
end;

function TComplexVector.ImaginaryPart: TRealVector;
var
  i: Integer;
begin
  Result.Dimension := Dimension;
  for i := 0 to Dimension - 1 do
    Result.Data[i] := Data[i].Im;
end;

function TComplexVector.Defuzz(const Eps: Double): TComplexVector;
var
  i: Integer;
begin
  Result := Self;
  for i := 0 to Dimension - 1 do
    Result[i] := Result[i].Defuzz(Eps);
end;

function TComplexVector.str(const AOptions: TFormatOptions): string;
var
  i: Integer;
begin
  Result := '(';
  if Length(FComponents) > 0 then
    Result := Result + ComplexToStr(FComponents[0], False, AOptions);
  for i := 1 to High(FComponents) do
    Result := Result + ', ' + ComplexToStr(FComponents[i], False, AOptions);
  Result := Result + ')';
end;

function ASC2(const u1, u2: TASC): TComplexVector; inline;
begin
  Result := TComplexVector.Create([u1, u2]);
end;

function ASC3(const u1, u2, u3: TASC): TComplexVector; inline;
begin
  Result := TComplexVector.Create([u1, u2, u3]);
end;

function ASC4(const u1, u2, u3, u4: TASC): TComplexVector; inline;
begin
  Result := TComplexVector.Create([u1, u2, u3, u4]);
end;

function ASC5(const u1, u2, u3, u4, u5: TASC): TComplexVector; inline;
begin
  Result := TComplexVector.Create([u1, u2, u3, u4, u5]);
end;

function ComplexZeroVector(const Dimension: Integer): TComplexVector;
begin
  Result := TComplexVector.Create(Dimension, 0);
end;

function SameVector(const u, v: TComplexVector; const Epsilon: Extended = 0): Boolean;
var
  i: Integer;
begin

  if u.Dimension <> v.Dimension then
    Exit(False);

  for i := 0 to u.Dimension - 1 do
    if not CSameValue(u[i], v[i], Epsilon) then
      Exit(False);

  Result := True;

end;

function SameVectorEx(const u, v: TComplexVector; const Epsilon: Extended = 0): Boolean;
var
  i: Integer;
begin

  if u.Dimension <> v.Dimension then
    Exit(False);

  for i := 0 to u.Dimension - 1 do
    if not CSameValueEx(u[i], v[i], Epsilon) then
      Exit(False);

  Result := True;

end;

function AreParallel(const u, v: TComplexVector; Epsilon: Extended = 0): Boolean;
var
  factor: TASC;
  i: Integer;
  un, vn: TComplexVector;
begin
  if Epsilon = 0 then
    Epsilon := 1E-12;
  if u.Dimension <> v.Dimension then
    raise EMathException.Create('Vectors are of different dimension.');
  if u.IsZeroVector(Epsilon) or v.IsZeroVector(Epsilon) then
    Exit(True);
  un := u.Normalized;
  vn := v.Normalized;
  factor := 0;
  for i := 0 to un.Dimension - 1 do
    if not CIsZero(un[i], Epsilon) and not CIsZero(vn[i], Epsilon) then
    begin
      factor := vn[i] / un[i];
      Break;
    end;
  if factor = 0 then
    Exit(False);
  for i := 0 to un.Dimension - 1 do
    if not CSameValue(factor * un[i], vn[i], Epsilon) then
      Exit(False);
  Result := True;
end;

function ArePerpendicular(const u, v: TComplexVector; const Epsilon: Extended = 0): Boolean;
begin
  Result := CIsZero(u * v, Epsilon);
end;

function accumulate(const u: TComplexVector; const AStart: TASC; AFunc: TAccumulator<TASC>): TASC;
var
  i: Integer;
begin
  Result := AStart;
  for i := 0 to u.Dimension - 1 do
    Result := AFunc(Result, u[i]);
end;

function sum(const u: TComplexVector): TASC;
begin
  Result := accumulate(u, 0, ASC_PLUS);
end;

function ArithmeticMean(const u: TComplexVector): TASC;
begin
  Result := sum(u) / u.Dimension;
end;

function GeometricMean(const u: TComplexVector): TASC;
var
  p: TASR;
begin
  p := 1 / u.Dimension;
  Result := { pow(product(u), 1 / u.Dimension) = }
            product(u.Apply(function(const X: TASC): TASC
              begin
                Result := cpow(X, p);
              end));
end;

function HarmonicMean(const u: TComplexVector): TASC;
begin
  Result := 1 / ArithmeticMean(u.Apply(cinv));
end;

function product(const u: TComplexVector): TASC;
begin
  Result := accumulate(u, 1, ASC_TIMES);
end;

function exists(const u: TComplexVector; APredicate: TPredicate<TASC>): Boolean; overload;
var
  i: Integer;
begin
  for i := 0 to u.Dimension - 1 do
    if APredicate(u[i]) then
      Exit(True);
  Result := False;
end;

function count(const u: TComplexVector; APredicate: TPredicate<TASC>): Integer; overload;
var
  i: Integer;
begin
  Result := 0;
  for i := 0 to u.Dimension - 1 do
    if APredicate(u[i]) then
      Inc(Result);
end;

function count(const u: TComplexVector; const AValue: TASC): Integer; overload;
var
  i: Integer;
begin
  Result := 0;
  for i := 0 to u.Dimension - 1 do
    if CSameValue(u[i], AValue) then
      Inc(Result);
end;

function ForAll(const u: TComplexVector; APredicate: TPredicate<TASC>): Boolean; overload;
var
  i: Integer;
begin
  for i := 0 to u.Dimension - 1 do
    if not APredicate(u[i]) then
      Exit(False);
  Result := True;
end;

function contains(const u: TComplexVector; const AValue: TASC;
  const AEpsilon: TASR; ALen: Integer): Boolean; overload;
var
  i: Integer;
begin
  if ALen = -1 then
    ALen := u.Dimension;
  for i := 0 to ALen - 1 do
    if CSameValue(u[i], AValue, AEpsilon) then
      Exit(True);
  Result := False;
end;

function CrossProduct(const u, v: TComplexVector): TComplexVector;
begin

  if (u.Dimension <> 3) or (v.Dimension <> 3) then
    raise EMathException.Create('Vector cross product only defined in ℂ³.');

  Result.Dimension := 3;
  Result[0] := u[1] * v[2] - u[2] * v[1];
  Result[1] := u[2] * v[0] - u[0] * v[2];
  Result[2] := u[0] * v[1] - u[1] * v[0];

end;

function angle(const u, v: TComplexVector): TASR;
begin

  if not (u.Dimension = v.Dimension) then
    raise EMathException.Create('Cannot compute angle between vectors of different dimension.');

  Result := arccos((u*v).Re/(u.Norm * v.Norm));

end;

function VectConcat(const u, v: TComplexVector): TComplexVector; overload;
begin
  Result.Dimension := u.Dimension + v.Dimension;
  if u.Dimension > 0 then
    VectMove(u, 0, u.Dimension - 1, Result);
  if v.Dimension > 0 then
    VectMove(v, 0, v.Dimension - 1, Result, u.Dimension);
end;


{ **************************************************************************** }
{ Matrix helpers                                                               }
{ **************************************************************************** }

class function TDuplicateFinder<T>.ContainsDuplicates(Arr: array of T): Boolean;
var
  i: Integer;
begin
  TArray.Sort<T>(Arr);
  Result := PresortedContainsDuplicates(Arr);
end;

class function TDuplicateFinder<T>.PresortedContainsDuplicates(const Arr: array of T): Boolean;
var
  i: Integer;
begin
  for i := 1 to High(Arr) do
    if TEqualityComparer<T>.Default.Equals(Arr[i], Arr[i - 1]) then
      Exit(True);
  Result := False;
end;

constructor TMatrixSize.CreateUnsafe(Rows, Cols: Integer);
begin
  FRows := Rows;
  FCols := Cols;
end;

constructor TMatrixSize.Create(Rows: Integer; Cols: Integer);
begin

  if (Rows <= 0) or (Cols <= 0) then
    raise EMathException.Create('A matrix must have size at least 1×1.');

  FRows := Rows;
  FCols := Cols;

end;

constructor TMatrixSize.Create(Size: Integer);
begin
  Create(Size, Size);
end;

function TMatrixSize.ElementCount: Integer;
begin
  Result := FRows * FCols;
end;

function TMatrixSize.SmallestDimension: Integer;
begin
  Result := Min(FRows, FCols);
end;

function TMatrixSize.TransposeSize: TMatrixSize;
begin
  Result.FRows := Self.FCols;
  Result.FCols := Self.FRows;
end;

function TMatrixSize.LessenedSize: TMatrixSize;
begin
  Result.FRows := Self.FRows;
  Result.FCols := Self.FCols - 1;
end;

class operator TMatrixSize.Implicit(const AMatrixSize: TMatrixSize): TSize;
begin
  Result.Width := AMatrixSize.Cols;
  Result.Height := AMatrixSize.Rows;
end;

class operator TMatrixSize.Implicit(const ASize: TSize): TMatrixSize;
begin
  Result := TMatrixSize.Create(ASize.Height, ASize.Width);
end;

function TMatrixSize.IsSquare: Boolean;
begin
  Result := FRows = FCols;
end;

class operator TMatrixSize.Implicit(S: Integer): TMatrixSize;
begin
  Result := TMatrixSize.Create(S);
end;

class operator TMatrixSize.Equal(const S1, S2: TMatrixSize): Boolean;
begin
  Result := (S1.FRows = S2.FRows) and (S1.FCols = S2.FCols);
end;

class operator TMatrixSize.NotEqual(const S1, S2: TMatrixSize): Boolean;
begin
  Result := not (S1 = S2);
end;

class operator TMatrixSize.Add(const S1, S2: TMatrixSize): TMatrixSize;
begin
  Result.FRows := S1.FRows + S2.FRows;
  Result.FCols := S1.FCols + S2.FCols;
end;

function __sign(const P: TIndexArray): Integer;
var
  i: Integer;
begin
  Result := 1;
  for i := 0 to High(P) do
    if P[i] = -1 then
      Exit(0)
    else if P[i] <> i then
      Result := -Result;
end;


{ **************************************************************************** }
{ Real matrices                                                                }
{ **************************************************************************** }

const
  // Notice: there isn't a unique empty matrix, so don't compare against this
  // one; instead, use TRealMatrix.IsEmpty.
  _EmptyMatrix: TRealMatrix = (FSize: (FRows: 0; FCols: 0); FElements: nil;
    FRowOpSeq: nil; FRowOpCount: 0; FRowOpFactor: 0; _FCollectRowOpData: False);

constructor TRealMatrix.CreateWithoutAllocation(const ASize: TMatrixSize);
begin
  FSize := ASize;
  FElements := nil;
  _FCollectRowOpData := False;
end;

constructor TRealMatrix.CreateUninitialized(const ASize: TMatrixSize);
begin
  Alloc(ASize);
end;

constructor TRealMatrix.Create(const AMatrix: TRealMatrix);
begin
  Alloc(AMatrix.Size);
  Move(AMatrix.Data[0], FElements[0], Length(Self.Data) * SizeOf(TASR));
end;

constructor TRealMatrix.Create(const Elements: array of TASRArray);
var
  rc, cc: Integer;
  i: Integer;
begin

  rc := Length(Elements);
  cc := 0;
  if rc > 0 then
    cc := Length(Elements[0]);

  Alloc(rc, cc);

  for i := 0 to rc - 1 do
  begin
    if Length(Elements[i]) <> cc then
      raise EMathException.Create('Attempt to create a non-rectangular matrix.');
    Move(Elements[i][0], FElements[i*cc], cc*SizeOf(Elements[i][0]));
  end;

end;

constructor TRealMatrix.Create(const Elements: array of TASR; Cols: Integer = 1);
begin

  if Cols <= 0 then
    raise EMathException.Create('A matrix must have size at least 1×1.');

  if Length(Elements) mod Cols <> 0 then
    raise EMathException.Create('Attempt to create a non-rectangular matrix.');

  Alloc(Length(Elements) div Cols, Cols);
  Move(Elements[0], FElements[0], Length(Elements) * SizeOf(Elements[0]));

end;

constructor TRealMatrix.Create(const ASize: TMatrixSize; const AVal: TASR = 0);
var
  i: Integer;
begin
  Alloc(ASize);
  for i := 0 to FSize.ElementCount - 1 do
    FElements[i] := AVal;
end;

constructor TRealMatrix.CreateFromRows(const Rows: array of TRealVector);
var
  rc, cc: Integer;
  i: Integer;
begin

  rc := Length(Rows);
  cc := 0;
  if rc > 0 then
    cc := Rows[0].Dimension;

  Alloc(rc, cc);

  for i := 0 to rc - 1 do
  begin
    if Rows[i].Dimension <> cc then
      raise EMathException.Create('Attempt to create a non-rectangular matrix.');
    Move(Rows[i].Data[0], FElements[i*cc], cc*SizeOf(Rows[i][0]));
  end;

end;

constructor TRealMatrix.CreateFromColumns(const Columns: array of TRealVector);
var
  rc, cc: Integer;
  i: Integer;
begin

  cc := Length(Columns);
  rc := 0;
  if cc > 0 then
    rc := Columns[0].Dimension;

  Alloc(rc, cc);

  for i := 0 to cc - 1 do
    if Columns[i].Dimension <> rc then
      raise EMathException.Create('Attempt to create a non-rectangular matrix.');

  for i := 0 to FSize.ElementCount - 1 do
    FElements[i] := Columns[i mod cc][i div cc];

end;

constructor TRealMatrix.Create(const u: TRealVector; const v: TRealVector);
var
  i: Integer;
begin

  Alloc(u.Dimension, v.Dimension);

  for i := 0 to Size.ElementCount - 1 do
    FElements[i] := u[i div Size.Cols] * v[i mod Size.Cols];

end;

constructor TRealMatrix.Create(const ASize: TMatrixSize; AFunction: TMatrixIndexFunction<TASR>);
var
  i: Integer;
begin

  Alloc(ASize);

  for i := 0 to Size.ElementCount - 1 do
    FElements[i] := AFunction(i div Size.Cols + 1, i mod Size.Cols + 1);

end;

constructor TRealMatrix.CreateDiagonal(const Elements: array of TASR);
var
  i: Integer;
begin

  Alloc(Length(Elements));

  FillChar(FElements[0], Size.ElementCount * SizeOf(FElements[0]), 0);
  for i := 0 to Size.Cols - 1 do
    FElements[i * (Size.Cols + 1)] := Elements[i];

end;

constructor TRealMatrix.CreateDiagonal(const Elements: TRealVector);
begin
  CreateDiagonal(Elements.Data);
end;

constructor TRealMatrix.CreateDiagonal(ASize: Integer; AVal: TASR = 1);
var
  i: Integer;
begin

  Alloc(ASize);

  FillChar(FElements[0], Size.ElementCount * SizeOf(FElements[0]), 0);
  for i := 0 to Size.Cols - 1 do
    FElements[i * (Size.Cols + 1)] := AVal;

end;

constructor TRealMatrix.Create(const Blocks: array of TRealMatrix; Cols: Integer = 2);
var
  Rows: Integer;
  RowRows, RowTops, ColCols, ColLefts: array of Integer;
  i: Integer;
  j: Integer;
  index: Integer;
begin

  if Length(Blocks) = 0 then
    raise EMathException.Create('Invalid block matrix construction: the number of blocks has to be at least 1.');

  if Cols < 1 then
    raise EMathException.Create('Invalid block matrix construction: the number of blocks per row has to be at least 1.');

  if Cols > Length(Blocks) then
    raise EMathException.Create('Invalid block matrix construction: too few blocks to fill the first row.');

  Rows := Length(Blocks) div Cols;
  if Length(Blocks) mod Cols <> 0 then
    Inc(Rows);

  SetLength(RowRows, Rows);
  SetLength(RowTops, Rows + 1);
  SetLength(ColCols, Cols);
  SetLength(ColLefts, Cols + 1);

  for i := 0 to Cols - 1 do
    ColCols[i] := Blocks[i].Size.Cols;

  ColLefts[0] := 0;
  for i := 1 to Cols do
    ColLefts[i] := ColLefts[i - 1] + ColCols[i - 1];

  for i := 0 to Rows - 1 do
    RowRows[i] := Blocks[i * Cols].Size.Rows;

  RowTops[0] := 0;
  for i := 1 to Rows do
    RowTops[i] := RowTops[i - 1] + RowRows[i - 1];

  index := 0;
  for i := 0 to Rows - 1 do
    for j := 0 to Cols - 1 do
    begin
      if index < Length(Blocks) then
        with Blocks[index] do
          if (Size.Rows <> RowRows[i]) or (Size.Cols <> ColCols[j]) or (Size.ElementCount < 1) then
            raise EMathException.CreateFmt('Invalid block matrix construction: invalid block at position (%d, %d), index %d.', [i + 1, j + 1, index + 1]);
      Inc(index);
    end;

  // All arguments validated

  Alloc(RowTops[Rows], ColLefts[Cols]);

  index := 0;
  for i := 0 to Rows - 1 do
    for j := 0 to Cols - 1 do
    begin
      if index < Length(Blocks) then
        MatMove(Blocks[index], Self, Point(ColLefts[j], RowTops[i]))
      else
      begin
        MatBlockFill(Self, Rect(ColLefts[j], RowTops[i], Size.Cols - 1, Size.Rows - 1), 0);
        Break;
      end;
      Inc(index);
    end;

end;

function TRealMatrix.GetElement(Row: Integer; Col: Integer): TASR;
begin
  Result := FElements[Size.Cols * Row + Col];
end;

procedure TRealMatrix.SetElement(Row: Integer; Col: Integer; const Value: TASR);
begin
  FElements[Size.Cols * Row + Col] := Value;
end;

procedure TRealMatrix.Alloc(ARows: Integer; ACols: Integer);
begin
  FSize.Create(ARows, ACols);
  SetLength(FElements, Size.ElementCount);
  _FCollectRowOpData := False;
end;

procedure TRealMatrix.Alloc(ASize: Integer);
begin
  FSize.Create(ASize);
  SetLength(FElements, Size.ElementCount);
  _FCollectRowOpData := False;
end;

procedure TRealMatrix.Alloc(const ASize: TMatrixSize);
begin
  FSize := ASize;
  SetLength(FElements, Size.ElementCount);
  _FCollectRowOpData := False;
end;

function TRealMatrix.GetRowData(AIndex: Integer): PASR;
begin
  Result := @FElements[Size.Cols * AIndex];
end;

function TRealMatrix.SafeGetRowData(AIndex: Integer): PASR;
begin
  if not InRange(AIndex, 0, Size.Rows - 1) then
    raise Exception.Create('The specified row does not exist.');
  Result := GetRowData(AIndex);
end;

function TRealMatrix.SafeSort(AComparer: IComparer<TASR>): TRealMatrix;
begin
  TRealVector(FElements).SafeSort(AComparer);
  Result := Self;
end;

function TRealMatrix.GetMemorySize: Int64;
begin
  Result := SizeOf(Self) + Length(FElements) * SizeOf(TASR) +
    Length(FRowOpSeq) * SizeOf(TRealRowOperationRecord);
end;

function TRealMatrix.IsEmpty: Boolean;
begin
  Result := Size.ElementCount = 0;
end;

procedure TRealMatrix.BeginCollectRowOpData;
begin
  Assert(InitialRowOpSeqSize > 0); // required by AddRowOpRecord
  SetLength(FRowOpSeq, InitialRowOpSeqSize);
  FRowOpCount := 0;
  FRowOpFactor := 1;
  _FCollectRowOpData := True;
end;

//procedure TRealMatrix.EndCollectRowOpData;
//begin
//  SetLength(FRowOpSeq, 0);
//  _FCollectRowOpData := False;
//end;

procedure TRealMatrix.AddRowOpRecord(AType: TRowOperationType; ARow1,
  ARow2: Integer; AFactor: TASR);
begin
  Assert(_FCollectRowOpData);

  if FRowOpCount = Length(FRowOpSeq) then
    SetLength(FRowOpSeq, 2*FRowOpCount);
  FRowOpSeq[FRowOpCount].RowOperationType := AType;
  FRowOpSeq[FRowOpCount].Row1 := ARow1;
  FRowOpSeq[FRowOpCount].Row2 := ARow2;
  FRowOpSeq[FRowOpCount].Factor := AFactor;
  Inc(FRowOpCount);
  case AType of
    roSwap:
      FRowOpFactor := -FRowOpFactor;
    roScale:
      FRowOpFactor := FRowOpFactor * AFactor;
    roAddMul: ;
  end;
end;

function TRealMatrix.Eigenvalues2x2: TComplexVector;
var
  a, b, c, d, ad, bc, avg, avgsq, disc: TASR;
begin

  a := Self[0, 0];
  b := Self[0, 1];
  c := Self[1, 0];
  d := Self[1, 1];

  ad := a * d;
  bc := b * c;

  if SameValue2(a, -d) then
    avg := 0
  else
    avg := (a + d) / 2;

  avgsq := avg * avg;

  if SameValue2(ad, bc) then
    disc := avgsq
  else
    if SameValue2(avgsq, ad - bc) then
      disc := 0
    else
      disc := avgsq - ad + bc;

  if disc = 0 then
    Exit( avg * ASC2(1, 1) );

  if disc > 0 then
    Exit( avg * ASC2(1, 1) + sqrt(disc) * ASC2(1, -1) );

  {disc < 0}
  Exit( avg * ASC2(1, 1) + sqrt(-disc) * ImaginaryUnit * ASC2(1, -1) );

end;

procedure TRealMatrix.DoQuickLU(out A: TRealMatrix; out P: TIndexArray);
var
  y: Integer;
  yp: Integer;
  maxval, newval: TASR;
  maxpos: Integer;
  x: Integer;
  row1, row2: PASR;
begin

  if not IsSquare then
    raise EMathException.Create('LU decomposition only implemented for square matrices.');

  RequireNonEmpty;

  A := Clone;
  SetLength(P, Size.Rows);

  for y := 0 to Size.Rows - 2 do
  begin
    row1 := A.RowData[y];
    maxpos := A.Size.Rows - 1;
    maxval := System.Abs(A[Size.Rows - 1, y]);
    for yp := A.Size.Rows - 2 downto y do
    begin
      newval := System.Abs(A[yp, y]);
      if newval > maxval then
      begin
        maxval := newval;
        maxpos := yp;
      end;
    end;
    if IsZero(maxval) then
      P[y] := -1
    else
    begin
      P[y] := maxpos;
      if maxpos <> y then
        A.RowSwap(maxpos, y);
      for yp := y + 1 to Size.Rows - 1 do
      begin
        row2 := A.RowData[yp];
        row2[y] := row2[y] / row1[y];
        for x := y + 1 to Size.Cols - 1 do
          row2[x] := row2[x] - row2[y] * row1[x];
      end;
    end;
    DoYield;
  end;

  if IsZero(A.Data[A.Size.ElementCount - 1]) then
    P[Size.Rows - 1] := -1
  else
    P[Size.Rows - 1] := Size.Rows - 1;

end;

class operator TRealMatrix.Implicit(const u: TRealVector): TRealMatrix;
begin
  if u.Dimension = 0 then
    Exit(_EmptyMatrix);
  Result.Alloc(TMatrixSize.CreateUnsafe(u.Dimension, 1));
  if u.Dimension > 0 then
    Move(u.Data[0], Result.Data[0], u.Dimension * SizeOf(TASR));
end;

class operator TRealMatrix.Explicit(const A: TRealMatrix): TRealVector;
begin
  if A.IsColumn then
    Result := TRealVector(A.Data)
  else
    raise EMathException.Create('Cannot treat matrix as vector if it isn''t a column vector.');
end;

class operator TRealMatrix.Explicit(X: TASR): TRealMatrix;
const
  ScalarSize: TMatrixSize = (FRows: 1; FCols: 1);
begin
  Result.Alloc(ScalarSize);
  Move(X, Result.Data[0], SizeOf(TASR));
end;

class operator TRealMatrix.Negative(const A: TRealMatrix): TRealMatrix;
var
  i: Integer;
begin
  Result := TRealMatrix.CreateUninitialized(A.Size);
  for i := 0 to A.Size.ElementCount - 1 do
    Result.Data[i] := -A.Data[i];
end;

class operator TRealMatrix.Add(const A, B: TRealMatrix): TRealMatrix;
var
  i: Integer;
begin
  if A.Size <> B.Size then
    raise EMathException.Create('Cannot add two matrices of different sizes.');
  Result := TRealMatrix.CreateUninitialized(A.Size);
  for i := 0 to A.Size.ElementCount - 1 do
    Result.Data[i] := A.Data[i] + B.Data[i];
end;

class operator TRealMatrix.Add(const A: TRealMatrix; const X: TASR): TRealMatrix;
var
  i: Integer;
begin
  Result := TRealMatrix.CreateUninitialized(A.Size);
  for i := 0 to A.Size.ElementCount - 1 do
    Result.Data[i] := A.Data[i] + X;
end;

class operator TRealMatrix.Subtract(const A, B: TRealMatrix): TRealMatrix;
var
  i: Integer;
begin
  if A.Size <> B.Size then
    raise EMathException.Create('Cannot subtract two matrices of different sizes.');
  Result := TRealMatrix.CreateUninitialized(A.Size);
  for i := 0 to A.Size.ElementCount - 1 do
    Result.Data[i] := A.Data[i] - B.Data[i];
end;

class operator TRealMatrix.Subtract(const A: TRealMatrix; const X: TASR): TRealMatrix;
var
  i: Integer;
begin
  Result := TRealMatrix.CreateUninitialized(A.Size);
  for i := 0 to A.Size.ElementCount - 1 do
    Result.Data[i] := A.Data[i] - X;
end;

class operator TRealMatrix.Multiply(const A, B: TRealMatrix): TRealMatrix;
var
  i: Integer;
  j: Integer;
  k: Integer;
  row1, row2: PASR;
begin

  if A.Size.Cols <> B.Size.Rows then
    raise EMathException.Create('When multiplying two matrices, the number of columns in the first matrix has to equal the number of rows in the second matrix.');

  Result := TRealMatrix.CreateUninitialized(TMatrixSize.Create(A.Size.Rows, B.Size.Cols));

  if (A.Size.ElementCount > 100000) and Assigned(GTYieldProc) then
  begin
    for i := 0 to Result.Size.Rows - 1 do
    begin
      row1 := Result.RowData[i];
      row2 := A.RowData[i];
      for j := 0 to Result.Size.Cols - 1 do
      begin
        row1[j] := 0;
        for k := 0 to A.Size.Cols - 1 do
          row1[j] := row1[j] + row2[k] * B[k, j];
        if Assigned(GTYieldProc) then
          GTYieldProc;
      end;
    end;
  end
  else
  begin
    for i := 0 to Result.Size.Rows - 1 do
    begin
      row1 := Result.RowData[i];
      row2 := A.RowData[i];
      for j := 0 to Result.Size.Cols - 1 do
      begin
        row1[j] := 0;
        for k := 0 to A.Size.Cols - 1 do
          row1[j] := row1[j] + row2[k] * B[k, j];
      end;
    end;
  end;

end;

class operator TRealMatrix.Multiply(const X: TASR; const A: TRealMatrix): TRealMatrix;
var
  i: Integer;
begin
  Result := TRealMatrix.CreateUninitialized(A.Size);
  for i := 0 to A.Size.ElementCount - 1 do
    Result.Data[i] := A.Data[i] * X;
end;

class operator TRealMatrix.Multiply(const A: TRealMatrix; const X: TASR): TRealMatrix;
var
  i: Integer;
begin
  Result := TRealMatrix.CreateUninitialized(A.Size);
  for i := 0 to A.Size.ElementCount - 1 do
    Result.Data[i] := A.Data[i] * X;
end;

class operator TRealMatrix.Divide(const A: TRealMatrix; const X: TASR): TRealMatrix;
var
  i: Integer;
begin
  Result := TRealMatrix.CreateUninitialized(A.Size);
  for i := 0 to A.Size.ElementCount - 1 do
    Result.Data[i] := A.Data[i] / X;
end;

class operator TRealMatrix.Equal(const A, B: TRealMatrix): Boolean;
begin
  Result := (A.Size = B.Size) and (TRealVector(A.Data) = TRealVector(B.Data));
end;

class operator TRealMatrix.NotEqual(const A, B: TRealMatrix): Boolean;
begin
  Result := not (A = B);
end;

class operator TRealMatrix.Trunc(const A: TRealMatrix): TRealMatrix;
begin
  Result := A.Apply(function(const X: TASR): TASR begin Result := System.Trunc(X) end);
end;

class operator TRealMatrix.Round(const A: TRealMatrix): TRealMatrix;
begin
  Result := A.Apply(function(const X: TASR): TASR begin Result := System.Round(X) end);
end;

class operator TRealMatrix.LessThan(const A, B: TRealMatrix): Boolean;
begin
  Result := (B - A).IsPositive;
end;

class operator TRealMatrix.LessThanOrEqual(const A, B: TRealMatrix): Boolean;
begin
  Result := (B - A).IsNonNegative;
end;

class operator TRealMatrix.GreaterThan(const A, B: TRealMatrix): Boolean;
begin
  Result := (A - B).IsPositive;
end;

class operator TRealMatrix.GreaterThanOrEqual(const A, B: TRealMatrix): Boolean;
begin
  Result := (A - B).IsNonNegative;
end;

function TRealMatrix.IsRow: Boolean;
begin
  Result := Size.Rows = 1;
end;

function TRealMatrix.IsColumn: Boolean;
begin
  Result := Size.Cols = 1;
end;

function TRealMatrix.IsSquare: Boolean;
begin
  Result := Size.Rows = Size.Cols;
end;

function TRealMatrix.IsIdentity(const Epsilon: Extended): Boolean;
var
  i: Integer;
begin

  if not IsSquare then Exit(False);

  for i := 0 to Size.ElementCount - 1 do
    if not SameValue(FElements[i], IversonBracket(i mod (Size.Cols + 1) = 0), Epsilon) then
      Exit(False);

  Result := True;

end;

function TRealMatrix.IsZeroMatrix(const Epsilon: Extended): Boolean;
var
  i: Integer;
begin

  for i := 0 to Size.ElementCount - 1 do
    if not IsZero(FElements[i], Epsilon) then
      Exit(False);

  Result := True;

end;

function TRealMatrix.IsDiagonal(const Epsilon: Extended): Boolean;
var
  x, y: Integer;
  row: PASR;
begin

  for y := 0 to Size.Rows - 1 do
  begin
    row := RowData[y];
    for x := 0 to Size.Cols - 1 do
      if (y <> x) and not IsZero(row[x], Epsilon) then
        Exit(False);
  end;

  Result := True;

end;

function TRealMatrix.IsAntiDiagonal(const Epsilon: Extended): Boolean;
var
  y: Integer;
  x: Integer;
  row: PASR;
begin

  if not IsSquare then Exit(False);

  for y := 0 to Size.Rows - 1 do
  begin
    row := RowData[y];
    for x := 0 to Size.Cols - 1 do
      if (x <> Size.Cols - 1 - y) and not IsZero(row[x], Epsilon) then
        Exit(False);
  end;

  Result := True;

end;

function TRealMatrix.IsReversal(const Epsilon: Extended): Boolean;
var
  x: TASR;
begin
  Result := IsAntiDiagonal(Epsilon);
  if Result then
    for x in Antidiagonal.Data do
      if not SameValue(x, 1, Epsilon) then
        Exit(False);
end;

function TRealMatrix.IsUpperTriangular(const Epsilon: Extended): Boolean;
var
  y: Integer;
  x: Integer;
  row: PASR;
begin

  for y := 1 to Size.Rows - 1 do
  begin
    row := RowData[y];
    for x := 0 to Min(y, Size.Cols) - 1 do
      if not IsZero(row[x], Epsilon) then
        Exit(False);
  end;

  Result := True;

end;

function TRealMatrix.IsLowerTriangular(const Epsilon: Extended): Boolean;
var
  y: Integer;
  x: Integer;
  row: PASR;
begin

  for y := 0 to Size.Rows - 1 do
  begin
    row := RowData[y];
    for x := y + 1 to Size.Cols - 1 do
      if not IsZero(row[x], Epsilon) then
        Exit(False);
  end;

  Result := True;

end;

function TRealMatrix.IsTriangular(const Epsilon: Extended): Boolean;
begin
  Result := IsUpperTriangular(Epsilon) or IsLowerTriangular(Epsilon);
end;

function TRealMatrix.PivotPos(ARow: Integer; const Epsilon: Extended): Integer;
var
  x: Integer;
  row: PASR;
begin
  row := SafeRowData[ARow];
  for x := 0 to Size.Cols - 1 do
    if not IsZero(row[x], Epsilon) then
      Exit(x);
  Result := -1;
end;

function TRealMatrix.IsZeroRow(ARow: Integer; const Epsilon: Extended): Boolean;
begin
  Result := PivotPos(ARow, Epsilon) = -1;
end;

function TRealMatrix.kNorm(const k: Integer): TASR;
begin
  Result := TRealVector(FElements).kNorm(k);
end;

function TRealMatrix.IsEssentiallyZeroRow(ARow: Integer; const Epsilon: Extended): Boolean;
var
  pp: Integer;
begin
  pp := PivotPos(ARow, Epsilon);
  Result := (pp = -1) or (pp = Size.Cols - 1);
end;

function TRealMatrix.IsRowEchelonForm(const Epsilon: Extended): Boolean;
var
  y: Integer;
  p, prep: Integer;
begin
  prep := -1;
  for y := Size.Rows - 1 downto 0 do
  begin
    p := PivotPos(y, Epsilon);
    if (prep > -1) and ((p = -1) or (p >= prep)) then
      Exit(False);
    prep := p;
  end;
  Result := True;
end;

function TRealMatrix.IsReducedRowEchelonForm(const Epsilon: Extended): Boolean;
var
  y: Integer;
  p, prep: Integer;
  yp: Integer;
begin
  prep := -1;
  for y := Size.Rows - 1 downto 0 do
  begin
    p := PivotPos(y, Epsilon);
    if (prep > -1) and ((p = -1) or (p >= prep)) then
      Exit(False);
    if p > -1 then
    begin
      if not SameValue(Self[y, p], 1, Epsilon) then
        Exit(False);
      for yp := y - 1 downto 0 do
        if not IsZero(Self[yp, p], Epsilon) then
          Exit(False);
    end;
    prep := p;
  end;
  Result := True;
end;

function TRealMatrix.IsScalar(const Epsilon: Extended): Boolean;
var
  val: TASR;
  i: Integer;
begin

  Result := IsSquare and IsDiagonal(Epsilon);
  if not Result then
    Exit;

  if Size.ElementCount = 0 then
    Exit(True);

  val := FElements[0];
  for i := 1 to Size.Rows - 1 do
    if not SameValue(Self[i, i], val, Epsilon) then
      Exit(False);

end;

function TRealMatrix.IsSymmetric(const Epsilon: Extended): Boolean;
begin
  Result := IsSquare and SameMatrixEx(Self, Transpose, Epsilon);
end;

function TRealMatrix.IsSkewSymmetric(const Epsilon: Extended): Boolean;
begin
  Result := IsSquare and SameMatrixEx(Self, -Transpose, Epsilon);
end;

function TRealMatrix.IsOrthogonal(const Epsilon: Extended): Boolean;
begin
  Result := IsSquare and (Self.Transpose * Self).IsIdentity(Epsilon);
end;

function TRealMatrix.IsNormal(const Epsilon: Extended): Boolean;
begin
  Result := CommutesWith(Transpose, Epsilon);
end;

function TRealMatrix.IsBinary(const Epsilon: Extended): Boolean;
var
  i: Integer;
begin

  for i := 0 to Size.ElementCount - 1 do
    if not (SameValue(FElements[i], 0, Epsilon) or SameValue(FElements[i], 1, Epsilon)) then
      Exit(False);

  Result := True;

end;

function TRealMatrix.IsPermutation(const Epsilon: Extended): Boolean;
var
  y, x: Integer;
  c: Integer;
begin

  Result := IsSquare and IsBinary(Epsilon);
  if not Result then
    Exit;

  for y := 0 to Size.Rows - 1 do
  begin
    c := 0;
    for x := 0 to Size.Cols - 1 do
      if SameValue(Self[y, x], 1, Epsilon) then
        Inc(c);
    if c <> 1 then
      Exit(False);
  end;

  for x := 0 to Size.Cols - 1 do
  begin
    c := 0;
    for y := 0 to Size.Rows - 1 do
      if SameValue(Self[y, x], 1, Epsilon) then
        Inc(c);
    if c <> 1 then
      Exit(False);
  end;

end;

function TRealMatrix.IsCirculant(const Epsilon: Extended): Boolean;
var
  y: Integer;
  x: Integer;
  row0, row: PASR;
begin

  row0 := RowData[0];
  for y := 1 to Size.Rows - 1 do
  begin
    row := RowData[y];
    for x := 0 to Size.Cols - 1 do
      if not SameValue(row0[x], row[(x + y) mod Size.Cols], Epsilon) then
        Exit(False);
  end;

  Result := True;

end;

function TRealMatrix.IsToeplitz(const Epsilon: Extended): Boolean;
var
  r1, c1: TRealVector;
  y: Integer;
  x: Integer;

  function virtarr(index: Integer): TASR;
  begin
    if index <= 0 then
      Result := r1[-index]
    else
      Result := c1[index];
  end;

begin

  r1 := Self.Rows[0];
  c1 := Self.Cols[0];

  for y := 1 to Size.Rows - 1 do
    for x := 1 to Size.Cols - 1 do
      if not SameValue(Self[y, x], virtarr(y - x), Epsilon) then
        Exit(False);

  Result := True;

end;

function TRealMatrix.IsHankel(const Epsilon: Extended): Boolean;
var
  r1, cl: TRealVector;
  y: Integer;
  x: Integer;

  function virtarr(index: Integer): TASR;
  begin
    if index >= Self.Size.Cols then
      Result := cl[index - Self.Size.Cols + 1]
    else
      Result := r1[index];
  end;

begin

  r1 := Rows[0];
  cl := Cols[Size.Cols - 1];

  for y := 1 to Size.Rows - 1 do
    for x := 0 to Size.Cols - 2 do
      if not SameValue(Self[y, x], virtarr(x + y), Epsilon) then
        Exit(False);

  Result := True;

end;

function TRealMatrix.IsUpperHessenberg(const Epsilon: Extended): Boolean;
var
  y: Integer;
  x: Integer;
begin

  for y := 2 to Size.Rows - 1 do
    for x := 0 to Min(y - 2, Size.Cols - 1) do
      if not IsZero(Self[y, x], Epsilon) then
        Exit(False);

  Result := True;

end;

function TRealMatrix.IsLowerHessenberg(const Epsilon: Extended): Boolean;
var
  y: Integer;
  x: Integer;
begin

  for x := 2 to Size.Cols - 1 do
    for y := 0 to Min(x - 2, Size.Rows - 1) do
      if not IsZero(Self[y, x], Epsilon) then
        Exit(False);

  Result := True;

end;

function TRealMatrix.IsTridiagonal(const Epsilon: Extended): Boolean;
begin
  Result := IsSquare and IsUpperHessenberg(Epsilon) and IsLowerHessenberg(Epsilon);
end;

function TRealMatrix.IsUpperBidiagonal(const Epsilon: Extended): Boolean;
begin
  Result := IsTridiagonal(Epsilon) and Subdiagonal.IsZeroVector(Epsilon);
end;

function TRealMatrix.IsLowerBidiagonal(const Epsilon: Extended): Boolean;
begin
  Result := IsTridiagonal(Epsilon) and Superdiagonal.IsZeroVector(Epsilon);
end;

function TRealMatrix.IsBidiagonal(const Epsilon: Extended): Boolean;
begin
  Result := IsTridiagonal(Epsilon) and
    (Subdiagonal.IsZeroVector(Epsilon) or Superdiagonal.IsZeroVector(Epsilon));
end;

function TRealMatrix.IsCentrosymmetric(const Epsilon: Extended): Boolean;
var
  i, j: Integer;
begin

  Result := IsSquare;

  if not Result then
    Exit;

  for i := 0 to Size.Rows - 1 do
    for j := 0 to Size.Rows - 1 do
      if not SameValue(Self[i, j], Self[Size.Rows - 1 - i, Size.Rows - 1 - j], Epsilon) then
        Exit(False);

  Result := True;

end;

function TRealMatrix.IsVandermonde(const Epsilon: Extended): Boolean;
var
  y: Integer;
  x: Integer;
begin

  for y := 0 to Size.Rows - 1 do
  begin
    if not SameValue(Self[y, 0], 1, Epsilon) then
      Exit(False);
    for x := 2 to Size.Cols - 1 do
      if not SameValue(Self[y, x], IntPower(Self[y, 1], x), Epsilon) then
        Exit(False);
  end;

  Result := True;

end;

function TRealMatrix.CommutesWith(const A: TRealMatrix; const Epsilon: Extended): Boolean;
begin
  Result := SameMatrixEx(Self * A, A * Self, Epsilon);
end;

function TRealMatrix.IsIdempotent(const Epsilon: Extended): Boolean;
begin
  Result := IsSquare and SameMatrixEx(Self, Self * Self, Epsilon);
end;

function TRealMatrix.IsInvolution(const Epsilon: Extended): Boolean;
begin
  Result := IsSquare and SameMatrixEx(Self * Self, IdentityMatrix(Size.Rows), Epsilon);
end;

function TRealMatrix.IsPositiveDefinite(const Epsilon: Extended): Boolean;
begin
  Result := IsSymmetric(Epsilon) and eigenvalues.RealPart.IsPositive;
end;

function TRealMatrix.IsPositiveSemiDefinite(const Epsilon: Extended): Boolean;
begin
  Result := IsSymmetric(Epsilon) and eigenvalues.RealPart.IsNonNegative;
end;

function TRealMatrix.IsNegativeDefinite(const Epsilon: Extended): Boolean;
begin
  Result := IsSymmetric(Epsilon) and (-eigenvalues).RealPart.IsPositive;
end;

function TRealMatrix.IsNegativeSemiDefinite(const Epsilon: Extended): Boolean;
begin
  Result := IsSymmetric(Epsilon) and (-eigenvalues).RealPart.IsNonNegative;
end;

function TRealMatrix.IsIndefinite(const Epsilon: Extended): Boolean;
begin
  Result := IsSymmetric(Epsilon) and not (IsPositiveSemiDefinite or IsNegativeSemiDefinite);
end;

function TRealMatrix.IsNilpotent(const Epsilon: Extended): Boolean;
begin
  Result := IsSquare and (NilpotencyIndex(Epsilon) >= 0);
end;

function TRealMatrix.NilpotencyIndex(const Epsilon: Extended): Integer;
var
  i: Integer;
  A: TRealMatrix;
begin

  if not IsSquare then
    raise EMathException.Create('Cannot find nilpotency index of non-square matrix.');

  if not IsZero(Trace, Epsilon) then
    Exit(-1);

  A := Self;
  for i := 1 to Size.Rows do
    if A.IsZeroMatrix(Epsilon) then
      Exit(i)
    else if i < Size.Rows then
      A := A * Self;

  Exit(-1);

end;

function TRealMatrix.IsDiagonallyDominant: Boolean;
var
  y: Integer;
  d, r: TASR;
begin
  if not IsSquare then
    Exit(False);
  for y := 0 to Size.Rows - 1 do
  begin
    d := System.Abs(Self[y, y]);
    r := DeletedAbsoluteRowSum(y);
    if (d < r) and not SameValue(d, r) then
      Exit(False);
  end;
  Result := True;
end;

function TRealMatrix.IsStrictlyDiagonallyDominant: Boolean;
var
  y: Integer;
  d, r: TASR;
begin
  if not IsSquare then
    Exit(False);
  for y := 0 to Size.Rows - 1 do
  begin
    d := System.Abs(Self[y, y]);
    r := DeletedAbsoluteRowSum(y);
    if (d < r) or SameValue(d, r) then
      Exit(False);
  end;
  Result := True;
end;

function TRealMatrix.IsPositive(const Epsilon: Extended): Boolean;
begin
  Result := TRealVector(Data).IsPositive(Epsilon)
end;

function TRealMatrix.IsNonNegative(const Epsilon: Extended): Boolean;
begin
  Result := TRealVector(Data).IsNonNegative(Epsilon)
end;

function TRealMatrix.IsNegative(const Epsilon: Extended): Boolean;
begin
  Result := TRealVector(Data).IsNegative(Epsilon)
end;

function TRealMatrix.IsNonPositive(const Epsilon: Extended): Boolean;
begin
  Result := TRealVector(Data).IsNonPositive(Epsilon)
end;

procedure TRealMatrix.MakeLowerTriangular;
var
  i: Integer;
begin
  for i := 0 to Size.SmallestDimension - 1 do
    if Size.Cols - i > 1 then
      FillChar(RowData[i][i + 1], (Size.Cols - i - 1) * SizeOf(TASR), 0);
end;

procedure TRealMatrix.MakeUpperTriangular;
var
  i: Integer;
begin
  for i := 1 to Size.Rows - 1 do
    FillChar(RowData[i][0], Min(i, Size.Cols) * SizeOf(TASR), 0);
end;

procedure TRealMatrix.MakeUpperHessenberg;
var
  i: Integer;
begin
  for i := 2 to Size.Rows - 1 do
    FillChar(RowData[i][0], Min(i - 1, Size.Cols) * SizeOf(TASR), 0);
end;

function TRealMatrix.Sqr: TRealMatrix;
begin
  Result := Self * Self;
end;

function TRealMatrix.Transpose: TRealMatrix;
var
  y: Integer;
  x: Integer;
begin
  Result := TRealMatrix.CreateUninitialized(Size.TransposeSize);
  for y := 0 to Size.Rows - 1 do
    for x := 0 to Size.Cols - 1 do
      Result[x, y] := Self[y, x];
end;

function TRealMatrix.HermitianSquare: TRealMatrix;
begin
  Result := Transpose * Self;
end;

function TRealMatrix.Modulus: TRealMatrix;
begin
  Result := msqrt(HermitianSquare);
end;

function TRealMatrix.Determinant: TASR;
var
  A: TRealMatrix;
  P: TIndexArray;
begin

  if not IsSquare then
    raise EMathException.Create('Cannot compute determinant of non-square matrix.');

  DoQuickLU(A, P);
  Result := product(A.MainDiagonal) * __sign(P);

end;

function TRealMatrix.Trace: TASR;
var
  i: Integer;
begin
  if not IsSquare then
    raise EMathException.Create('Cannot compute trace of non-square matrix.');
  Result := 0;
  for i := 0 to Size.Rows - 1 do
    Result := Result + GetElement(i, i);
end;

procedure TRealMatrix.InplaceGramSchmidt(FirstCol, LastCol: Integer);
var
  i, j: Integer;
  v, w, c: TRealVector;
begin

  if not InRange(FirstCol, 0, Size.Cols - 1) or not InRange(LastCol, FirstCol, Size.Cols - 1) then
    raise EMathException.Create('InplaceGramSchmidt: Invalid column indices.');

  if FirstCol = LastCol then
    Exit;

  for i := Succ(FirstCol) to LastCol do
  begin

    v := Cols[i];
    w := v;

    // Step 1: orthogonalize
    for j := FirstCol to i - 1 do
    begin
      c := Cols[j];
      w := w - (v * c) * c;
    end;

    v := w;

    // Step 2: reorthogonalize
    for j := FirstCol to i - 1 do
    begin
      c := Cols[j];
      w := w - (v * c) * c;
    end;

    // Step 3: normalize
    w.NormalizeIfNonzero;

    Cols[i] := w;

  end;

end;

function TRealMatrix.Inverse: TRealMatrix;
begin
  if not IsSquare then
    raise EMathException.Create('Cannot compute inverse of non-square matrix.');
  Result := SysSolve(Self, IdentityMatrix(Size.Rows));
end;

function TRealMatrix.TryInvert(out AInverse: TRealMatrix): Boolean;
begin
  Result := TrySysSolve(Self, IdentityMatrix(Size.Rows), AInverse);
end;

function TRealMatrix.Rank: Integer;
begin
  Result := Size.Rows - RowEchelonForm.NumTrailingZeroRows;
end;

function TRealMatrix.Nullity: Integer;
begin
  Result := Size.Cols - Rank;
end;

function TRealMatrix.ConditionNumber(p: Integer = 2): TASR;
begin
  case p of
    1:
      Result := MaxColSumNorm * Inverse.MaxColSumNorm;
    2:
      Result := SpectralNorm * Inverse.SpectralNorm;
    INFTY:
      Result := MaxRowSumNorm * Inverse.MaxRowSumNorm;
  else
    raise EMathException.CreateFmt('ConditionNumber: Invalid norm: l%d.', [p]);
  end;
end;

function TRealMatrix.IsSingular: Boolean;
begin
  if not IsSquare then
    raise EMathException.Create('IsSingular: Matrix is not square.');
  Result := Rank < Size.Rows;
end;

function TRealMatrix.Norm: TASR;
begin
  Result := TRealVector(FElements).Norm;
end;

function TRealMatrix.NormSqr: TASR;
begin
  Result := TRealVector(FElements).NormSqr;
end;

function TRealMatrix.pNorm(const p: TASR): TASR;
begin
  Result := TRealVector(FElements).pNorm(p);
end;

function TRealMatrix.MaxNorm: TASR;
begin
  Result := TRealVector(FElements).MaxNorm;
end;

function TRealMatrix.SumNorm: TASR;
begin
  Result := TRealVector(FElements).SumNorm;
end;

function TRealMatrix.MaxColSumNorm: TASR;
var
  ColSums: TRealVector;
  i: Integer;
begin
  ColSums.Dimension := Size.Cols;
  for i := 0 to Size.Cols - 1 do
    ColSums[i] := sum(Cols[i].Abs());
  Result := max(ColSums);
end;

function TRealMatrix.MaxRowSumNorm: TASR;
var
  RowSums: TRealVector;
  i: Integer;
begin
  RowSums.Dimension := Size.Rows;
  for i := 0 to Size.Rows - 1 do
    RowSums[i] := sum(Rows[i].Abs());
  Result := max(RowSums);
end;

function TRealMatrix.SpectralNorm: TASR;
begin
  Result := SingularValues[0];
end;

function TRealMatrix.DeletedAbsoluteRowSum(ARow: Integer): TASR;
var
  j, i: Integer;
begin
  Result := 0;
  j := ARow * Size.Cols;
  for i := j to j + Size.Cols - 1 do
    Result := Result + System.Abs(FElements[i]);
  if ARow < Size.Cols then
    Result := Result - System.Abs(FElements[j + ARow]);
end;

function TRealMatrix.RowSwap(ARow1: Integer; ARow2: Integer): TRealMatrix;
var
  i: Integer;
  offset1, offset2: Integer;
begin
  offset1 := Size.Cols * ARow1;
  offset2 := Size.Cols * ARow2;
  for i := 0 to Size.Cols - 1 do
    TSwapper<TASR>.Swap(FElements[offset1 + i], FElements[offset2 + i]);
  Result := Self;
  if _FCollectRowOpData then AddRowOpRecord(roSwap, ARow1, ARow2);
end;

function TRealMatrix.RowScale(ARow: Integer; AFactor: TASR): TRealMatrix;
var
  i: Integer;
  Row: PASR;
begin
  Row := RowData[ARow];
  for i := 0 to Size.Cols - 1 do
    Row[i] := AFactor * Row[i];
  Result := Self;
  if _FCollectRowOpData then AddRowOpRecord(roScale, ARow, ARow, AFactor);
end;

function TRealMatrix.RowAddMul(ATarget: Integer; ASource: Integer; AFactor: TASR;
  ADefuzz: Boolean = False; AFirstCol: Integer = 0): TRealMatrix;
var
  i: Integer;
  TargetRow, SourceRow: PASR;
begin
  TargetRow := RowData[ATarget];
  SourceRow := RowData[ASource];
  for i := AFirstCol to Size.Cols - 1 do
    TargetRow[i] := TargetRow[i] + AFactor * SourceRow[i];
  Result := Self;
  if _FCollectRowOpData then AddRowOpRecord(roAddMul, ATarget, ASource, AFactor);
  if ADefuzz then
    for i := AFirstCol to Size.Cols - 1 do
      if IsZero(TargetRow[i]) then
        TargetRow[i] := 0;
end;

function TRealMatrix.RowOp(const ARowOp: TRealRowOperationRecord): TRealMatrix;
begin
  case ARowOp.RowOperationType of
    roSwap:
      Result := Self.RowSwap(ARowOp.Row1, ARowOp.Row2);
    roScale:
      Result := Self.RowScale(ARowOp.Row1, ARowOp.Factor);
    roAddMul:
      Result := Self.RowAddMul(ARowOp.Row1, ARowOp.Row2, ARowOp.Factor);
  end;
end;

function TRealMatrix.RowEchelonForm(CollectRowOps: Boolean): TRealMatrix;
var
  top: Integer;
  x: Integer;
  y, maxy: Integer;
  maxval: TASR;
  pivot: TASR;
begin
  Result := Clone;
  if CollectRowOps then
    Result.BeginCollectRowOpData;
  for top := 0 to Size.Rows - 2 do
  begin
    x := 0;
    while x < Size.Cols do
    begin
      maxy := top;
      maxval := System.Abs(Result[top, x]);
      for y := top + 1 to Size.Rows - 1 do
        if System.Abs(Result[y, x]) > maxval then
        begin
          maxy := y;
          maxval := System.Abs(Result[y, x]);
        end;
      if IsZero(maxval) then
      begin
        Inc(x);
        Continue;
      end;
      if maxy <> top then Result.RowSwap(top, maxy);
      pivot := Result[top, x];
      for y := top + 1 to Size.Rows - 1 do
        if not IsZero(Result[y, x]) then
          Result.RowAddMul(y, top, - Result[y, x] / pivot, True);
      Break;
    end;
  end;
end;

function TRealMatrix.ReducedRowEchelonForm(CollectRowOps: Boolean): TRealMatrix;
var
  y, p: Integer;
  pivot: TASR;
  yp: Integer;
begin
  Result := RowEchelonForm(CollectRowOps); // a copy
  for y := Result.Size.Rows - 1 downto 0 do
  begin
    p := Result.PivotPos(y);
    if p = -1 then Continue;
    pivot := Result[y, p];
    if pivot <> 1 then
      Result.RowScale(y, 1/pivot);
    for yp := y - 1 downto 0 do
      if not IsZero(Result[yp, p]) then
        Result.RowAddMul(yp, y, -Result[yp, p], True);
  end;
end;

function TRealMatrix.NumZeroRows(const AEpsilon: TASR): Integer;
var
  i: Integer;
begin
  Result := 0;
  for i := 0 to Size.Rows - 1 do
    if IsZeroRow(i, AEpsilon) then
      Inc(Result);
end;

function TRealMatrix.NumTrailingZeroRows(const AEpsilon: TASR): Integer;
var
  i: Integer;
begin
  Result := 0;
  for i := Size.Rows - 1 downto 0 do
    if IsZeroRow(i, AEpsilon) then
      Inc(Result)
    else
      Break;
end;

function TRealMatrix.GramSchmidt: TRealMatrix;
var
  i: Integer;
  v, w, c: TRealVector;
  j: Integer;
  cols: array of TRealVector;
begin

  SetLength(cols, Size.Cols);
  for i := 0 to Size.Cols - 1 do
    cols[i] := Self.Cols[i];

  for i := 0 to Size.Cols - 1 do
  begin
    v := cols[i];
    w := v;

    // Step 1: orthogonalize
    for j := 0 to i - 1 do
    begin
      c := cols[j];
      w := w - (v * c) * c;
    end;

    v := w;

    // Step 2: reorthogonalize
    for j := 0 to i - 1 do
    begin
      c := cols[j];
      w := w - (v * c) * c;
    end;

    // Step 3: normalize
    w.NormalizeIfNonzero;

    cols[i] := w;

  end;

  Result := TRealMatrix.CreateFromColumns(cols);

end;

function TRealMatrix.ColumnSpaceBasis: TRealMatrix;
var
  A: TRealMatrix;
  pivots: array of Integer;
  i: Integer;
begin
  A := RowEchelonForm;
  SetLength(pivots, Size.Rows);
  for i := 0 to High(pivots) do
    pivots[i] := A.PivotPos(i);
  Result := _EmptyMatrix;
  for i := 0 to High(pivots) do
    if pivots[i] <> -1 then
      Result := Result.Augment(Cols[pivots[i]])
end;

function TRealMatrix.ColumnSpaceProjection(const AVector: TRealVector): TRealVector;
var
  Basis: TRealMatrix;
  Coords: TRealVector;
  BasisT: TRealMatrix;
begin

  if Size.Cols = 0 then
    Exit(ZeroVector(AVector.Dimension));

  Basis := ColumnSpaceBasis;

  BasisT := Basis.Transpose;
  Coords := SysSolve((BasisT * Basis).Augment(BasisT * AVector));
  Result := TRealVector((Basis * Coords).Data);

end;

function TRealMatrix.DistanceFromColumnSpace(const AVector: TRealVector): TASR; // empty matrix aware, child safe
begin

  if Size.Cols = 0 then
    Exit(AVector.Norm);

  Result := (AVector - ColumnSpaceProjection(AVector)).Norm;

end;

function TRealMatrix.SimilarHessenberg(A2x2Bulge: Boolean = False): TRealMatrix;
var
  k: Integer;
  col: TRealVector;
  tau: TASR;
  gamma: TASR;
  uk: TRealVector;
  Ident, Q: TRealMatrix;
begin

  if not IsSquare then
    raise EMathException.Create('Cannot find similar Hessenberg matrix of non-square matrix.');

  Ident := IdentityMatrix(Size.Rows);
  Result := Clone;
  for k := 0 to Size.Rows - 2 - 1 do
  begin


    col.Dimension := Size.Rows - k - 1;
    MatMoveColToVect(Result, k, k + 1, Size.Rows - 1, col);
    GetHouseholderMap(col, tau, gamma, uk);
    if IsZero(gamma) then
      Q := Ident
    else
      Q := DirectSum(IdentityMatrix(k + 1), IdentityMatrix(col.Dimension) - TRealMatrix.Create(gamma * uk, uk));

    Result := Q * Result * Q;

    DoYield;

  end;

end;

function TRealMatrix.UnsortedEigenvalues: TComplexVector;
var
  A, Q: TRealMatrix;
  FirstCol, u: TRealVector;
  tau, gamma: TASR;
  n, e: Integer;
  i: Integer;
  c: Integer;
begin

  if not IsSquare then
    raise EMathException.Create('Cannot compute eigenvalues of non-square matrix.');

  if IsEmpty then
    Exit(TComplexVector.Create([]));

  if Size = Mat1x1 then
    Exit(TComplexVector.Create([Self[0, 0]]));

  if Size = Mat2x2 then
    Exit(Eigenvalues2x2);

  n := Size.Rows;
  e := n - 1;

  if n > 500 then
    raise Exception.Create('Matrix too big.');

  A := SimilarHessenberg(False);

  c := 0;
  while True do
  begin

    for i := 0 to e - 1 do
      if IsZero(A[i + 1, i]) then
        Exit(VectConcat(
          A.LeadingPrincipalSubmatrix(i + 1).UnsortedEigenvalues,
          A.Submatrix(CreateIntSequence(i + 1, e)).UnsortedEigenvalues
          ));

    FirstCol := ZeroVector(Size.Rows);
    FirstCol[0] := ((A[0, 0] - A[e-1, e-1]) * (A[0, 0] - A[e, e]) - A[e, e-1] * A[e-1, e]) / A[1, 0] + A[0, 1];
    FirstCol[1] := A[0, 0] + A[1, 1] - A[e-1, e-1] - A[e, e];
    FirstCol[2] := A[2, 1];

    GetHouseholderMap(FirstCol, tau, gamma, u);
    if IsZero(gamma) then
      Q := IdentityMatrix(n)
    else
      Q := IdentityMatrix(n) - TRealMatrix.Create(gamma * u, u);

    A := (Q * A * Q).SimilarHessenberg(True);

    Inc(c);
    if c > 100 then
      Break;

    DoYield;

  end;

  raise EMathException.Create('Couldn''t compute eigenvalues.');

end;

function TRealMatrix.spectrum: TComplexVector;
begin
  Result := eigenvalues;
end;

function TRealMatrix.eigenvectors(out AEigenvalues: TRealVector;
  out AEigenvectors: TRealMatrix; ASkipVerify: Boolean = False): Boolean;
const
  LIMIT = 10000;
var
  A, Q, R: TRealMatrix;
  i, j, k: Integer;
  lambda: TASR;
  E: TArray<TRealVector>;
  EigenspaceFirstIndex,
  EigenspaceLastIndex: Integer;
  EV: TComplexVector;
begin

  if IsDiagonal then
  begin
    AEigenvalues := MainDiagonal;
    AEigenvectors := IdentityMatrix(Size.Rows);
    Exit(True);
  end;

  Result := False;

  if IsSymmetric then
  begin
    A := Self;
    AEigenvectors := IdentityMatrix(Size.Rows);
    i := 0;
    repeat
      A.QR(Q, R);
      A := R * Q;
      AEigenvectors := AEigenvectors * Q;
      Inc(i);
      DoYield;
    until A.IsUpperTriangular or (i = LIMIT);
    AEigenvalues := A.MainDiagonal.Defuzz;
    Result := (i < LIMIT) or A.IsUpperTriangular(1E-6);
  end;

  if not Result then
  begin
    try
      EV := eigenvalues;
      if EV.IsReal then
        AEigenvalues := EV.RealPart
      else
        Exit(False);
      SetLength(E, AEigenvalues.Dimension);
      for i := 0 to High(E) do
        E[i] := EigenvectorOf(AEigenvalues[i]);
      AEigenvectors := TRealMatrix.CreateFromColumns(E);
      Result := True;
    except
      Result := False;
    end;
  end;

  if Result then
  begin

    if IsSymmetric then
    begin
      lambda := 0; // for compiler
      EigenspaceFirstIndex := 0;
      for i := 0 to AEigenvalues.Dimension{sic!} do
      begin
        if (i = AEigenvalues.Dimension) or (i > 0) and not SameValue(AEigenvalues[i], lambda) then
        begin
          EigenspaceLastIndex := Pred(i);
          if EigenspaceLastIndex > EigenspaceFirstIndex then
            AEigenvectors.InplaceGramSchmidt(EigenspaceFirstIndex, EigenspaceLastIndex);
          EigenspaceFirstIndex := i;
        end;
        if i < AEigenvalues.Dimension then
          lambda := AEigenvalues[i];
      end;
    end;

    for i := 0 to AEigenvectors.Size.Cols - 1 do
    begin
      for j := 0 to AEigenvectors.Size.Rows - 1 do
        if AEigenvectors[j, i] > 0 then
          Break
        else if AEigenvectors[j, i] < 0 then
        begin
          for k := 0 to AEigenvectors.Size.Rows - 1 do
            AEigenvectors[k, i] := -AEigenvectors[k, i];
          Break;
        end;
    end;

  end;

  if Result and not ASkipVerify then
  begin

    if AEigenvectors.IsSingular then
      Exit(False);

    for i := 0 to Size.Cols - 1 do
      if not IsEigenpair(AEigenvalues[i], AEigenvectors.Cols[i], 1E-6) then
        Exit(False);

  end;

end;

function TRealMatrix.IsEigenvector(const u: TRealVector; const Epsilon: Extended = 0): Boolean;
var
  im: TRealVector;
begin
  if not IsSquare then
    raise EMathException.Create('Non-square matrix cannot have eigenvectors.');
  if u.Dimension <> Size.Cols then
    raise EMathException.Create('Vector is of wrong dimension.');
  if u.IsZeroVector(Epsilon) then Exit(False);
  im := TRealVector((Self * u).Data);
  Result := AreParallel(u, im, Epsilon);
end;

function TRealMatrix.EigenvalueOf(const u: TRealVector; const Epsilon: Extended = 0): TASR;
begin
  if not TryEigenvalueOf(u, Result, Epsilon) then
    raise EMathException.Create('A vector which isn''t an eigenvector has no associated eigenvalue.');
end;

function TRealMatrix.TryEigenvalueOf(const u: TRealVector; out AEigenvalue: TASR;
  const Epsilon: Extended = 0): Boolean;
var
  i: Integer;
  im: TRealVector;
begin

  if not IsEigenvector(u, Epsilon) then
    Exit(False);

  Result := True;
  im := TRealVector((Self * u).Data);

  if im.IsZeroVector(Epsilon) then
  begin
    AEigenvalue := 0;
    Exit;
  end;

  for i := 0 to u.Dimension - 1 do
    if not IsZero(u[i], Epsilon) and not IsZero(im[i], Epsilon) then
    begin
      AEigenvalue := im[i] / u[i];
      Exit;
    end;

  raise EMathException.Create('Couldn''t compute associated eigenvalue of given eigenvector.');

end;

function TRealMatrix.IsEigenpair(const lambda: TASR; const u: TRealVector;
  const Epsilon: Extended): Boolean;
begin
  if not IsSquare then
    raise EMathException.Create('Non-square matrix cannot have eigenvectors.');
  if u.Dimension <> Size.Cols then
    raise EMathException.Create('Vector is of wrong dimension.');
  Result := SameVectorEx(TRealVector((Self * u).Data), lambda * u, Epsilon) and not u.IsZeroVector(Epsilon);
end;

function TRealMatrix.EigenvectorOf(const lambda: TASR): TRealVector;
var
  pertlambda: TASR;
  A: TRealMatrix;
  i: Integer;
  j: Integer;
  Done: Boolean;
  u: TRealVector;
begin

  if not IsSquare then
    raise EMathException.Create('EigenvectorOf: The matrix isn''t square.');

  // Inverting a singular matrix!

  pertlambda := lambda;
  i := 0;
  while not (Self - pertlambda * IdentityMatrix(Size.Rows)).TryInvert(A) do
  begin
    if i = 100 then
      raise EMathException.Create('EigenvectorOf: Couldn''t invert matrix for inverse iteration.');
    Inc(i);
    pertlambda := lambda + 10*i * System.Abs(lambda) * ExtendedResolution * (2*Random - 1);
  end;


  for i := 1 to 10 do
  begin

    Result := RandomVector(Size.Rows);

    j := 0;
    repeat
      Result := TRealVector(A * Result).Normalized;
      Done := IsEigenpair(lambda, Result);
      Inc(j)
    until Done or (j > 10);

    if Done then
    begin
      // Defuzz
      u := TRealVector(A * TRealVector(Result)).Normalized;
      u := TRealVector(A * TRealVector(u)).Normalized;
      u := TRealVector(A * TRealVector(u)).Normalized;
      if Result.Norm > 0.001 then
      begin
        for j := 0 to Result.Dimension - 1 do
          if System.Abs(u[j]) < 1E-18 then
            u[j] := 0
      end
      else
        for j := 0 to Result.Dimension - 1 do
          if System.Abs(u[j]) < 1E-50 then
            u[j] := 0;

      if IsEigenpair(lambda, u) then
        Result := u;

      for j := 0 to Result.Dimension - 1 do
        if Result[j] > 0 then
          Break
        else if Result[j] < 0 then
        begin
          Result := -Result;
          Break;
        end;

      Exit;
    end;

  end;

  raise EMathException.Create('EigenvectorOf: Couldn''t compute associated eigenvector.');

end;

function TRealMatrix.SpectralRadius: TASR;
begin
  Result := max(spectrum.Abs());
end;

function TRealMatrix.SingularValues: TRealVector;
begin
  Result := HermitianSquare
    .eigenvalues
    .RealPart
    .ReverseSort
    .TruncateAt(Size.SmallestDimension)
    .Apply(sqrt);
end;

function TRealMatrix.Abs: TRealMatrix;
var
  i: Integer;
begin
  Result := TRealMatrix.CreateUninitialized(Size);
  for i := 0 to Size.ElementCount - 1 do
    Result.Data[i] := System.Abs(FElements[i]);
end;

function TRealMatrix.Defuzz(const Eps: Double): TRealMatrix;
begin
  Result := Self;
  TRealVector(FElements).Defuzz(Eps);
end;

function TRealMatrix.Clone: TRealMatrix; // empty matrix aware, child safe
begin
  Result := TRealMatrix.CreateUninitialized(Size);
  if Length(FElements) > 0 then
    Move(FElements[0], Result.FElements[0], Length(FElements) * SizeOf(TASR));
end;

function TRealMatrix.Vectorization: TRealVector;
begin
  Result := TRealVector(Transpose.Data); // move semantics!
end;

function TRealMatrix.AsVector: TRealVector;
begin
  Result := TRealVector.Create(Data); // copy semantics!
end;

function TRealMatrix.Augment(const A: TRealMatrix): TRealMatrix; // empty matrix aware, child safe
var
  y: Integer;
  x: Integer;
begin

  if IsEmpty then
    Exit(A.Clone);

  if Size.Rows <> A.Size.Rows then
    raise EMathException.Create('Cannot augment matrix with different number of rows.');

  Result := TRealMatrix.CreateUninitialized(TMatrixSize.Create(Size.Rows, Size.Cols + A.Size.Cols));

  for y := 0 to Size.Rows - 1 do
    for x := 0 to Size.Cols - 1 do
      Result.Elements[y, x] := Self[y, x];

  for y := 0 to Size.Rows - 1 do
    for x := 0 to A.Size.Cols - 1 do
      Result.Elements[y, Size.Cols + x] := A[y, x];

end;

function TRealMatrix.Augment: TRealMatrix;
begin
  Result := Augment(ZeroVector(Size.Rows));
end;

function TRealMatrix.GetRow(ARow: Integer): TRealVector;
begin
  if not InRange(ARow, 0, Size.Rows - 1) then
    raise EMathException.Create('The specified row does not exist.');
  Result.Dimension := Size.Cols;
  Move(FElements[ARow * Result.Dimension], Result.Data[0], Result.Dimension * SizeOf(TASR));
end;

function TRealMatrix.GetCol(ACol: Integer): TRealVector;
var
  i: Integer;
begin
  if not InRange(ACol, 0, Size.Cols - 1) then
    raise EMathException.Create('The specified column does not exist.');
  Result.Dimension := Size.Rows;
  for i := 0 to Result.Dimension - 1 do
    Result[i] := Self[i, ACol];
end;

procedure TRealMatrix._DoSetRow(ARowIndex: Integer; const ARow: TRealVector);
var
  i: Integer;
  j: Integer;
begin

  if Length(ARow.Data) <> Size.Cols then
    raise EMathException.Create('Incorrect length of array.');

  if not InRange(ARowIndex, 0, Size.Rows - 1) then
    raise EMathException.Create('The specified row does not exist.');

  j := Length(ARow.Data) * ARowIndex;
  for i := 0 to Length(ARow.Data) - 1 do
    FElements[j + i] := ARow[i];

end;

procedure TRealMatrix.SetRow(ARowIndex: Integer; const ARow: array of TASR);
var
  dummy: TASRArray;
begin
  SetLength(dummy, Length(ARow));
  if Length(ARow) > 0 then
    Move(ARow[0], dummy[0], Length(ARow) * SizeOf(TASR));
  _DoSetRow(ARowIndex, TRealVector(dummy));
end;

procedure TRealMatrix._DoSetCol(AColIndex: Integer; const ACol: TRealVector);
var
  i: Integer;
begin
  if Length(ACol.Data) <> Size.Rows then
    raise EMathException.Create('Incorrect length of array.');
  if not InRange(AColIndex, 0, Size.Cols - 1) then
    raise EMathException.Create('The specified column does not exist.');

  for i := 0 to Length(ACol.Data) - 1 do
    Self[i, AColIndex] := ACol[i];
end;

function TRealMatrix.GetFirstCol: TRealVector;
begin
  Result := Cols[0];
end;

procedure TRealMatrix.SetFirstCol(const ACol: TRealVector);
begin
  Cols[0] := ACol;
end;

function TRealMatrix.GetLastCol: TRealVector;
begin
  Result := Cols[Size.Cols - 1];
end;

procedure TRealMatrix.SetLastCol(const ACol: TRealVector);
begin
  Cols[Size.Cols - 1] := ACol;
end;

procedure TRealMatrix.SetCol(AColIndex: Integer; const ACol: array of TASR);
var
  dummy: TASRArray;
begin
  SetLength(dummy, Length(ACol));
  if Length(ACol) > 0 then
    Move(ACol[0], dummy[0], Length(ACol) * SizeOf(TASR));
  _DoSetCol(AColIndex, TRealVector(dummy));
end;

function TRealMatrix.GetMainDiagonal: TRealVector;
var
  i: Integer;
  q: Integer;
begin
  q := Size.SmallestDimension;
  Result.Dimension := q;
  for i := 0 to q - 1 do
    Result[i] := Self[i, i];
end;

procedure TRealMatrix.SetMainDiagonal(const ADiagonal: TRealVector);
var
  i: Integer;
  q: Integer;
begin
  q := Size.SmallestDimension;
  if ADiagonal.Dimension <> q then
    raise EMathException.Create('Incorrect number of elements in diagonal.');
  for i := 0 to q - 1 do
    Self[i, i] := ADiagonal[i];
end;

function TRealMatrix.GetSuperDiagonal: TRealVector;
var
  i: Integer;
  q: Integer;
begin
  if Size.Cols > Size.Rows then
    q := Size.Rows
  else
    q := Size.Cols - 1;
  Result.Dimension := q;
  for i := 0 to Result.Dimension - 1 do
    Result[i] := Self[i, i + 1];
end;

procedure TRealMatrix.SetSuperDiagonal(const ADiagonal: TRealVector);
var
  i: Integer;
  q: Integer;
begin
  if Size.Cols > Size.Rows then
    q := Size.Rows
  else
    q := Size.Cols - 1;
  if ADiagonal.Dimension <> q then
    raise EMathException.Create('Incorrect number of elements in superdiagonal.');
  for i := 0 to ADiagonal.Dimension - 1 do
    Self[i, i + 1] := ADiagonal[i];
end;

function TRealMatrix.GetSubDiagonal: TRealVector;
var
  i: Integer;
  q: Integer;
begin
  if Size.Rows > Size.Cols then
    q := Size.Cols
  else
    q := Size.Rows - 1;
  Result.Dimension := q;
  for i := 0 to Result.Dimension - 1 do
    Result[i] := Self[i + 1, i];
end;

procedure TRealMatrix.SetSubDiagonal(const ADiagonal: TRealVector);
var
  i: Integer;
  q: Integer;
begin
  if Size.Rows > Size.Cols then
    q := Size.Cols
  else
    q := Size.Rows - 1;
  if ADiagonal.Dimension <> q then
    raise EMathException.Create('Incorrect number of elements in subdiagonal.');
  for i := 0 to ADiagonal.Dimension - 1 do
    Self[i + 1, i] := ADiagonal[i];
end;

procedure TRealMatrix.SetSize(const Value: TMatrixSize);
begin
  FElements := nil; // clear dyn array data
  Alloc(Value);     // new elements will be 0
end;

function TRealMatrix.GetAntiDiagonal: TRealVector;
var
  i: Integer;
begin
  if not IsSquare then
    raise EMathException.Create('A non-square matrix has no antidiagonal.');
  Result.Dimension := Size.Rows;
  for i := 0 to Size.Rows - 1 do
    Result[i] := Self[i, Size.Cols - 1 - i];
end;

procedure TRealMatrix.SetAntiDiagonal(const ADiagonal: TRealVector);
var
  i: Integer;
begin
  if not IsSquare then
    raise EMathException.Create('A non-square matrix has no antidiagonal.');
  if ADiagonal.Dimension <> Size.Rows then
    raise EMathException.Create('Incorrect number of elements in antidiagonal.');
  for i := 0 to Size.Rows - 1 do
    Self[i, Size.Cols - 1 - i] := ADiagonal[i];
end;

function TRealMatrix.Submatrix(ARowToRemove: Integer; AColToRemove: Integer;
  AAllowEmpty: Boolean): TRealMatrix; // empty matrix aware, not child safe
var
  y: Integer;
  x: Integer;
  resy, resx: Integer;
begin

  if not (InRange(ARowToRemove, 0, Size.Rows - 1) and InRange(AColToRemove, 0, Size.Cols - 1)) then
    raise EMathException.Create('Invalid row or column index in call to function Submatrix.');

  if AAllowEmpty and (IsRow or IsColumn) then
    Exit(_EmptyMatrix);

  Result := TRealMatrix.CreateUninitialized(TMatrixSize.Create(Size.Rows - 1, Size.Cols - 1));

  resy := 0;
  for y := 0 to Size.Rows - 1 do
  begin
    if y = ARowToRemove then
      Continue;
    resx := 0;
    for x := 0 to Size.Cols - 1 do
    begin
      if x = AColToRemove then
        Continue;
      Result.Elements[resy, resx] := Self[y, x];
      Inc(resx);
    end;
    Inc(resy);
  end;

end;

function TRealMatrix.Submatrix(const ARows: array of Integer;
  const ACols: array of Integer): TRealMatrix;

  procedure InvalidArg;
  begin
    raise EMathException.Create('Invalid index arrays passed to function Submatrix.');
  end;

var
  i: Integer;
  y, x: Integer;
begin
  for i := 0 to High(ARows) do
    if not InRange(ARows[i], 0, Size.Rows - 1) then
      InvalidArg;
  for i := 0 to High(ACols) do
    if not InRange(ACols[i], 0, Size.Cols - 1) then
      InvalidArg;
  Result := TRealMatrix.CreateUninitialized(TMatrixSize.Create(Length(ARows), Length(ACols)));
  for y := 0 to Result.Size.Rows - 1 do
    for x := 0 to Result.Size.Cols - 1 do
      Result[y, x] := Self[ARows[y], ACols[x]];
end;

function TRealMatrix.Submatrix(const ARows: array of Integer): TRealMatrix;
begin
  Result := Submatrix(ARows, ARows);
end;

function TRealMatrix.LeadingPrincipalSubmatrix(const ASize: Integer): TRealMatrix;
begin
  Result := Submatrix(CreateIntSequence(0, ASize - 1));
end;

function TRealMatrix.Lessened: TRealMatrix;
var
  y: Integer;
  x: Integer;
begin
  if Size.Cols = 1 then
    raise EMathException.Create('Cannot lessen a single-column matrix.');
  Result := TRealMatrix.CreateUninitialized(Size.LessenedSize);
  for y := 0 to Result.Size.Rows - 1 do
    for x := 0 to Result.Size.Cols - 1 do
      Result[y, x] := Self[y, x];
end;

function TRealMatrix.Minor(ARow: Integer; ACol: Integer): TASR;
begin
  Result := Submatrix(ARow, ACol).Determinant;
end;

function TRealMatrix.Cofactor(ARow: Integer; ACol: Integer): TASR;
begin
  Result := AltSgn(ARow + ACol) * Minor(ARow, ACol);
end;

function TRealMatrix.CofactorMatrix: TRealMatrix;
var
  y: Integer;
  x: Integer;
begin
  if not IsSquare then
    raise EMathException.Create('Cannot compute cofactor matrix of non-square matrix.');
  Result := TRealMatrix.CreateUninitialized(Size);
  for y := 0 to Size.Rows - 1 do
    for x := 0 to Size.Cols - 1 do
    begin
      Result[y, x] := Cofactor(y, x);
      DoYield;
    end;
end;

function TRealMatrix.AdjugateMatrix: TRealMatrix;
begin
  Result := CofactorMatrix.Transpose;
end;

procedure TRealMatrix.LU(out P, L, U: TRealMatrix);

  function RowPermutationMatrix(n, i, j: Integer): TRealMatrix;
  begin
    Result := IdentityMatrix(n);
    Result[i, i] := 0;
    Result[j, j] := 0;
    Result[i, j] := 1;
    Result[j, i] := 1;
  end;

var
  A: TRealMatrix;
  Pvect: TIndexArray;
  i: Integer;
begin

  DoQuickLU(A, Pvect);

  L := A.Clone;
  L.MakeLowerTriangular;
  L.MainDiagonal := TRealVector.Create(L.Size.Rows, 1);

  U := A.Clone;
  U.MakeUpperTriangular;

  P := IdentityMatrix(Size.Rows);
  for i := 0 to High(Pvect) do
    if Pvect[i] <> -1 then
      P := RowPermutationMatrix(Size.Rows, i, Pvect[i]) * P;

end;

function TRealMatrix.Cholesky(out R: TRealMatrix): Boolean;
var
  i, j, k: Integer;
begin

  if not IsSquare then
    raise EMathException.Create('Cannot compute Cholesky decomposition of non-square matrix.');

  R := Clone;

  for i := 0 to Size.Rows - 1 do
  begin
    for k := 0 to i - 1 do
      R[i, i] := R[i, i]  - R[k, i] * R[k, i];
    if (R[i, i] < 0) or IsZero(R[i, i]) then
      Exit(False);
    R[i, i] := sqrt(R[i, i]);
    for j := i + 1 to Size.Rows - 1 do
    begin
      for k := 0 to i - 1 do
        R[i, j] := R[i, j] - R[k, i] * R[k, j];
      R[i, j] := R[i, j] / R[i, i];
    end;
    DoYield;
  end;

  R.MakeUpperTriangular;
  Result := True;

end;

procedure TRealMatrix.GetHouseholderMap(const AVect: TRealVector;
  out tau, gamma: TASR; out u: TRealVector);
var
  beta: TASR;
begin
  beta := max(AVect.Abs());
  if IsZero(beta) then
  begin
    tau := 0;
    gamma := 0;
    u := ZeroVector(AVect.Dimension);
  end
  else
  begin
    u := AVect / beta;
    tau := u.Norm;
    if u[0] < 0 then
      tau := -tau;
    u[0] := u[0] + tau;
    gamma := u[0] / tau;
    u := u / u[0];
    u[0] := 1;
    tau := tau * beta;
  end;
end;

procedure TRealMatrix.QR(out Q: TRealMatrix; out R: TRealMatrix);
var
  k: Integer;
  col: TRealVector;
  tau: TASR;
  gamma: TASR;
  u: TRealVector;
  Qk: TRealMatrix;
begin

  if Size.Cols > Size.Rows then
    raise EMathException.Create('QR decomposition only implemented for square and tall matrices.');

  R := Clone;
  Q := IdentityMatrix(R.Size.Rows);
  for k := 0 to Min(Size.Rows - 2, Size.Cols - 1) do
  begin

    col.Dimension := Size.Rows - k;
    MatMoveColToVect(R, k, k, Size.Rows - 1, col);
    GetHouseholderMap(col, tau, gamma, u);
    if IsZero(gamma) then
      Qk := IdentityMatrix(col.Dimension)
    else
      Qk := IdentityMatrix(col.Dimension) - TRealMatrix.Create(gamma * u, u);

    MatMulBlockInplaceL(R,
      Rect(
        k,
        k,
        Min(k + Qk.Size.Cols, R.Size.Cols) - 1,
        Min(k + Qk.Size.Rows, R.Size.Rows) - 1
      ),
      Qk);

    R[k, k] := -tau;

    MatMulBottomRight(Q, Qk);

    DoYield;

  end;

  R.MakeUpperTriangular;

end;

procedure TRealMatrix.Hessenberg(out A, U: TRealMatrix);
var
  k: Integer;
  col: TRealVector;
  tau: TASR;
  gamma: TASR;
  uk: TRealVector;
  Ident, Q: TRealMatrix;
begin

  if not IsSquare then
    raise EMathException.Create('Cannot find similar Hessenberg matrix of non-square matrix.');

  Ident := IdentityMatrix(Size.Rows);
  A := Clone;
  U := IdentityMatrix(Size.Rows);
  for k := 0 to Size.Rows - 2 - 1 do
  begin

    col.Dimension := Size.Rows - k - 1;
    MatMoveColToVect(A, k, k + 1, Size.Rows - 1, col);
    GetHouseholderMap(col, tau, gamma, uk);

    if IsZero(gamma) then
      Q := Ident
    else
      Q := DirectSum(IdentityMatrix(k + 1), IdentityMatrix(col.Dimension) - TRealMatrix.Create(gamma * uk, uk));

    A := Q * A * Q;
    U := U * Q;

  end;

end;

function TRealMatrix.Apply(AFunction: TRealFunctionRef): TRealMatrix;
var
  i: Integer;
begin
  Result := TRealMatrix.CreateUninitialized(Size);
  for i := 0 to Result.Size.ElementCount - 1 do
    Result.Data[i] := AFunction(FElements[i]);
end;

function TRealMatrix.Replace(APredicate: TPredicate<TASR>; const ANewValue: TASR): TRealMatrix;
begin
  Result := TRealMatrix.CreateUninitialized(Size);
  Result.Data := TASRArray(TRealVector(Self.Data).Replace(APredicate, ANewValue));
end;

function TRealMatrix.Replace(const AOldValue, ANewValue: TASR; const Epsilon: Extended): TRealMatrix;
begin
  Result := TRealMatrix.CreateUninitialized(Size);
  Result.Data := TASRArray(TRealVector(Self.Data).Replace(AOldValue, ANewValue, Epsilon));
end;

function TRealMatrix.Replace(const ANewValue: TASR): TRealMatrix;
begin
  Result := TRealMatrix.Create(Size, ANewValue);
end;

procedure TRealMatrix.RequireNonEmpty;
begin
  if IsEmpty then
    raise Exception.Create('Matrix is empty.');
end;

function TRealMatrix.str(const AOptions: TFormatOptions): string;
var
  y: Integer;
  x: Integer;
begin
  Result := '(';
  for y := 0 to Size.Rows - 1 do
  begin
    Result := Result + '(';
    for x := 0 to Size.Cols - 1 do
    begin
      Result := Result + RealToStr(Elements[y, x], AOptions);
      if x < Size.Cols - 1 then
        Result := Result + ', '
    end;
    Result := Result + ')';
    if y < Size.Rows - 1 then
      Result := Result + ', '
  end;
  Result := Result + ')';
end;

procedure TRealMatrix.AddRow(const ARow: array of TASR);
var
  i, j: Integer;
begin
  if Length(ARow) <> Size.Cols then
    raise EMathException.Create('Cannot add row to matrix since the number of columns doesn''t match.');
  Alloc(Size.Rows + 1, Size.Cols);
  j := Size.Cols * (Size.Rows - 1);
  for i := 0 to Length(ARow) - 1 do
  begin
    FElements[j] := ARow[i];
    Inc(j);
  end;
end;

function TRealMatrix.Sort(AComparer: IComparer<TASR>): TRealMatrix;
begin
  TRealVector(FElements).Sort(AComparer);
  Result := Self;
end;

function TRealMatrix.eigenvalues: TComplexVector;
begin
  Result := UnsortedEigenvalues.Sort(TASCComparer.ModulusArgumentDescending);
end;

function TRealMatrix.Shuffle: TRealMatrix;
begin
  TRealVector(FElements).Shuffle;
  Result := Self;
end;

function TRealMatrix.Reverse: TRealMatrix;
begin
  Result := Self;
  TRealVector(FElements).Reverse;
end;

function mpow(const A: TRealMatrix; const N: Integer): TRealMatrix;
var
  i: Integer;
begin
  if not A.IsSquare then
    raise EMathException.Create('Cannot compute power of non-square matrix.');

  if N < 0 then
    Exit(mpow(A.Inverse, -N));

  Result := IdentityMatrix(A.Size.Rows);
  for i := 1 to N do
    Result := Result * A;
end;

function msqrt(const A: TRealMatrix): TRealMatrix;
var
  T: TRealMatrix;
  u: TRealVector;
begin
  if not A.IsPositiveSemiDefinite then
    raise EMathException.Create('Matrix square root only defined for positive semidefinite symmetric matrices.');

  if not A.eigenvectors(u, T, True) then
    raise EMathException.Create('msqrt: Couldn''t diagonalize the matrix.');

  T := T.GramSchmidt;

  Result := T * diag(u.Apply(sqrt).Data) * T.Transpose;

  if not SameMatrixEx(Result.Sqr, A, 1E-8) then
    raise EMathException.Create('Couldn''t compute matrix square root.');
end;

function SameMatrix(const A, B: TRealMatrix; const Epsilon: Extended): Boolean;
begin
  Result := (A.Size = B.Size) and SameVector(TRealVector(A.Data), TRealVector(B.Data), Epsilon);
end;

function SameMatrixEx(const A, B: TRealMatrix; const Epsilon: Extended): Boolean;
begin
  Result := (A.Size = B.Size) and SameVectorEx(TRealVector(A.Data), TRealVector(B.Data), Epsilon);
end;

function ZeroMatrix(const ASize: TMatrixSize): TRealMatrix; inline;
begin
  Result := TRealMatrix.Create(ASize, 0);
end;

function IdentityMatrix(ASize: Integer): TRealMatrix; // empty matrix aware, not child safe
begin
  if ASize = 0 then Exit(_EmptyMatrix);
  Result := TRealMatrix.CreateDiagonal(ASize, 1);
end;

function ReversalMatrix(ASize: Integer): TRealMatrix;
begin
  Result := TRealMatrix.Create(TMatrixSize.Create(ASize), 0);
  Result.AntiDiagonal := TRealVector.Create(ASize, 1);
end;

function RandomMatrix(const ASize: TMatrixSize): TRealMatrix;
var
  i: Integer;
begin
  Result := TRealMatrix.CreateUninitialized(ASize);
  for i := 0 to Result.Size.ElementCount - 1 do
    Result.Data[i] := Random;
end;

function RandomIntMatrix(const ASize: TMatrixSize; a, b: Integer): TRealMatrix;
var
  i: Integer;
begin
  Result := TRealMatrix.CreateUninitialized(ASize);
  for i := 0 to Result.Size.ElementCount - 1 do
    Result.Data[i] := RandomRange(a, b);
end;

function diag(const AElements: array of TASR): TRealMatrix;
begin
  Result := TRealMatrix.CreateDiagonal(AElements);
end;

function diag(const AElements: TRealVector): TRealMatrix;
begin
  Result := TRealMatrix.CreateDiagonal(AElements);
end;

function OuterProduct(const u, v: TRealVector): TRealMatrix; inline;
begin
  Result := TRealMatrix.Create(u, v);
end;

function CirculantMatrix(const AElements: array of TASR): TRealMatrix;
var
  y: Integer;
  x: Integer;
  row: PASR;
begin
  Result := TRealMatrix.CreateUninitialized(Length(AElements));
  for y := 0 to Result.Size.Rows - 1 do
  begin
    row := Result.RowData[y];
    for x := 0 to Result.Size.Cols - 1 do
      row[x] := AElements[(Length(AElements) + x - y) mod Result.Size.Cols];
  end;
end;

function ToeplitzMatrix(const AFirstRow, AFirstCol: array of TASR): TRealMatrix;

  function virtarr(index: Integer): TASR;
  begin
    if index <= 0 then
      Result := AFirstRow[-index]
    else
      Result := AFirstCol[index];
  end;

var
  y: Integer;
  x: Integer;

begin

  if (Length(AFirstRow) = 0) or (Length(AFirstCol) = 0) then
    raise EMathException.Create('The given vectors must be of dimension one or greater.');

  if not SameValueEx(AFirstRow[0], AFirstCol[0]) then
    raise EMathException.Create('The first element of the first row must equal the first element of the first column.');

  Result := TRealMatrix.CreateUninitialized(TMatrixSize.Create(Length(AFirstCol), Length(AFirstRow)));

  for y := 0 to Result.Size.Rows - 1 do
    for x := 0 to Result.Size.Cols - 1 do
      Result[y, x] := virtarr(y - x);

end;

function HankelMatrix(const AFirstRow, ALastCol: array of TASR): TRealMatrix;

  function virtarr(index: Integer): TASR;
  begin
    if index >= Length(AFirstRow) then
      Result := ALastCol[index - Length(AFirstRow) + 1]
    else
      Result := AFirstRow[index];
  end;

var
  y: Integer;
  x: Integer;

begin

  if (Length(AFirstRow) = 0) or (Length(ALastCol) = 0) then
    raise EMathException.Create('The specified vectors must be of dimension one or greater.');

  if not SameValueEx(AFirstRow[High(AFirstRow)], ALastCol[0]) then
    raise EMathException.Create('The last element of the first row must equal the first element of the last column.');

  Result := TRealMatrix.CreateUninitialized(TMatrixSize.Create(Length(ALastCol), Length(AFirstRow)));

  for y := 0 to Result.Size.Rows - 1 do
    for x := 0 to Result.Size.Cols - 1 do
      Result[y, x] := virtarr(y + x);

end;

function BackwardShiftMatrix(ASize: Integer): TRealMatrix;
begin
  Result := TRealMatrix.Create(TMatrixSize.Create(ASize), 0);
  Result.Superdiagonal := TRealVector.Create(ASize - 1, 1);
end;

function ForwardShiftMatrix(ASize: Integer): TRealMatrix;
begin
  Result := TRealMatrix.Create(TMatrixSize.Create(ASize), 0);
  Result.Subdiagonal := TRealVector.Create(ASize - 1, 1);
end;

function VandermondeMatrix(const AElements: array of TASR; ACols: Integer): TRealMatrix;
var
  y: Integer;
  x: Integer;
  row: PASR;
begin
  if ACols <= 0 then
    ACols := Length(AElements);
  Result := TRealMatrix.CreateUninitialized(TMatrixSize.Create(Length(AElements), ACols));
  for y := 0 to Result.Size.Rows - 1 do
  begin
    row := Result.RowData[y];
    if ACols >= 1 then
      row[0] := 1;
    if ACols >= 2 then
      row[1] := AElements[y];
    for x := 2 to Result.Size.Cols - 1 do
      row[x] := IntPower(AElements[y], x);
  end;
end;

function HilbertMatrix(const ASize: TMatrixSize): TRealMatrix;
var
  y: Integer;
  x: Integer;
  row: PASR;
begin
  Result := TRealMatrix.CreateUninitialized(ASize);
  for y := 0 to ASize.Rows - 1 do
  begin
    row := Result.RowData[y];
    for x := 0 to ASize.Cols - 1 do
      row[x] := 1 / (y + x + 1);
  end;
end;

function RotationMatrix(AAngle: TASR; ADim: Integer = 2; AIndex1: Integer = 0;
  AIndex2: Integer = 1): TRealMatrix;
var
  i, j: Integer;
  s, c: Extended;
begin

  i := min(AIndex1, AIndex2);
  j := max(AIndex1, AIndex2);

  if not InRange(i, 0, ADim - 1) or not InRange(j, 0, ADim - 1) or (i = j) then
    raise EMathException.Create('Invalid coordinate indices.');

  Result := IdentityMatrix(ADim);
  SinCos(AAngle, s, c);
  Result[i, i] := c;
  Result[j, i] := s;
  Result[i, j] := -s;
  Result[j, j] := c;

end;

function OrthogonalVector(const u: TRealVector): TRealVector;
var
  c: Integer;
  i, j: Integer;
  NonZeroIndices: array[0..2] of Integer;
  MinVal: TASR;
  MinIndex: Integer;
begin

  if u.Dimension <> 3 then
    raise Exception.Create('OrthogonalVector: Only implemented in R^3.');

  MinIndex := 0;          // completely unnecessary, but makes compiler happy
  MinVal := 0;            // completely unnecessary, but makes compiler happy
  c := 0;
  for i := 0 to 2 do
    if not IsZero(u[i]) then
    begin
      NonZeroIndices[c] := i;
      Inc(c);
      if (i = 0) or (Abs(u[i]) < MinVal) then
      begin
        MinIndex := i;
        MinVal := Abs(u[i]);
      end;
    end;

  case c of
    0:
      Exit(ASR3(1, 0, 0));
    1:
      Exit(UnitVector(3, (NonZeroIndices[0] + 1) mod 3));
    2:
      for i := 0 to 2 do
        if (i <> NonZeroIndices[0]) and (i <> NonZeroIndices[1]) then
          Exit(UnitVector(3, i));
    3:
      begin
        i := (MinIndex - 1 + 3) mod 3;
        j := (MinIndex + 1    ) mod 3;
        Result.Dimension := 3;
        Result[i] := u[j];
        Result[MinIndex] := 0.0;
        Result[j] := -u[i];
        Result.Normalize;
      end;
  else
    raise Exception.Create('ASNum.OrthogonalVector: Internal error.');
  end;

end;

function RotationMatrix(AAngle: TASR; AAxis: TRealVector): TRealMatrix; overload;
var
  A, T: TRealMatrix;
  u, v, w: TRealVector;
begin

  if AAxis.Dimension <> 3 then
    raise Exception.Create('Axis to rotate about must be given by a three-dimensional vector.');

  if AAxis.IsZeroVector then
    raise Exception.Create('Cannot rotate about the zero vector.');

  u := AAxis.Normalized;
  v := OrthogonalVector(u);
  w := CrossProduct(u, v);

  T := TRealMatrix.CreateFromColumns([u, v, w]);
  A := RotationMatrix(AAngle, 3, 1, 2);

  Result := T * A * T.Transpose;

end;

function ReflectionMatrix(const u: TRealVector): TRealMatrix;
begin
  if u.IsZeroVector then
    raise EMathException.Create('Vector cannot be zero.');
  Result := IdentityMatrix(u.Dimension) - 2 * OuterProduct(u, u) / u.NormSqr;
end;

function QuickReflectionMatrix(const u: TRealVector): TRealMatrix;
begin
  Result := IdentityMatrix(u.Dimension) - 2 * OuterProduct(u, u);
end;

function HadamardProduct(const A, B: TRealMatrix): TRealMatrix;
var
  i: Integer;
begin
  if A.Size <> B.Size then
    raise EMathException.Create('Hadamard product only defined for matrices of the same size.');
  Result := TRealMatrix.CreateUninitialized(A.Size);
  for i := 0 to Result.Size.ElementCount - 1 do
    Result.Data[i] := A.Data[i] * B.Data[i];
end;

function DirectSum(const A, B: TRealMatrix): TRealMatrix;
begin
  Result := DirectSum([A, B]);
end;

function DirectSum(const Blocks: array of TRealMatrix): TRealMatrix; overload;
var
  i: Integer;
  cols, rows: Integer;
  x, y: Integer;
begin
  cols := 0;
  rows := 0;
  for i := 0 to High(Blocks) do
  begin
    Inc(cols, Blocks[i].Size.Cols);
    Inc(rows, Blocks[i].Size.Rows);
  end;

  Result := TRealMatrix.CreateUninitialized(TMatrixSize.CreateUnsafe(rows, cols));

  x := 0;
  y := 0;
  for i := 0 to High(Blocks) do
  begin
    MatMove(Blocks[i], Result, Point(x, y));
    MatBlockFill(Result,
      Rect(x + Blocks[i].Size.Cols, y, Result.Size.Cols - 1, y + Blocks[i].Size.Rows - 1),
      0);
    MatBlockFill(Result,
      Rect(x, y + Blocks[i].Size.Rows, x + Blocks[i].Size.Cols - 1, Result.Size.Rows - 1),
      0);
    Inc(x, Blocks[i].Size.Cols);
    Inc(y, Blocks[i].Size.Rows);
  end;
end;

function Commute(const A, B: TRealMatrix; const Epsilon: Extended): Boolean;
begin
  Result := A.CommutesWith(B, Epsilon);
end;

function accumulate(const A: TRealMatrix; AStart: TASR;
  AAccumulator: TAccumulator<TASR>): TASR;
begin
  Result := accumulate(TRealVector(A.Data), AStart, AAccumulator);
end;

function sum(const A: TRealMatrix): TASR; inline;
begin
  Result := sum(TRealVector(A.Data));
end;

function ArithmeticMean(const A: TRealMatrix): TASR; inline;
begin
  Result := ArithmeticMean(TRealVector(A.Data));
end;

function GeometricMean(const A: TRealMatrix): TASR; inline;
begin
  Result := GeometricMean(TRealVector(A.Data));
end;

function HarmonicMean(const A: TRealMatrix): TASR; inline;
begin
  Result := HarmonicMean(TRealVector(A.Data));
end;

function product(const A: TRealMatrix): TASR; inline;
begin
  Result := product(TRealVector(A.Data));
end;

function max(const A: TRealMatrix): TASR; inline;
begin
  Result := max(TRealVector(A.Data));
end;

function min(const A: TRealMatrix): TASR; inline;
begin
  Result := min(TRealVector(A.Data));
end;

function exists(const A: TRealMatrix; APredicate: TPredicate<TASR>): Boolean;
begin
  Result := exists(TRealVector(A.Data), APredicate);
end;

function count(const A: TRealMatrix; APredicate: TPredicate<TASR>): Integer;
begin
  Result := count(TRealVector(A.Data), APredicate);
end;

function count(const A: TRealMatrix; const AValue: TASR): Integer; inline;
begin
  Result := count(TRealVector(A.Data), AValue);
end;

function ForAll(const A: TRealMatrix; APredicate: TPredicate<TASR>): Boolean;
begin
  Result := ForAll(TRealVector(A.Data), APredicate);
end;

function contains(const A: TRealMatrix; AValue: TASR): Boolean; inline;
begin
  Result := contains(TRealVector(A.Data), AValue);
end;

function TryForwardSubstitution(const A: TRealMatrix; const Y: TRealVector;
  out Solution: TRealVector; IsUnitDiagonal: Boolean = False): Boolean;
var
  i: Integer;
  row: PASR;
  j: Integer;
begin

  if not A.IsSquare then
    raise EMathException.Create('ForwardSubstitution: Coefficient matrix isn''t square.');

  if A.Size.Cols <> Y.Dimension then
    raise EMathException.Create('ForwardSubstitution: RHS is of wrong dimension.');

  Solution.Dimension := Y.Dimension;

  for i := 0 to A.Size.Rows - 1 do
  begin
    row := A.RowData[i];
    Solution[i] := Y[i];
    for j := 0 to i - 1 do
      Solution[i] := Solution[i] - row[j] * Solution[j];
    if not IsUnitDiagonal then
    begin
      if IsZero(row[i]) then
        Exit(False)
      else
        Solution[i] := Solution[i] / row[i];
    end;
  end;

  Result := True;

end;

function ForwardSubstitution(const A: TRealMatrix; const Y: TRealVector;
  IsUnitDiagonal: Boolean = False): TRealVector;
begin

  if not TryForwardSubstitution(A, Y, Result, IsUnitDiagonal) then
    raise EMathException.Create('ForwardSubstitution: Matrix is singular.')

end;

function TryBackSubstitution(const A: TRealMatrix; const Y: TRealVector;
  out Solution: TRealVector): Boolean;
var
  i: Integer;
  row: PASR;
  j: Integer;
begin

  if not A.IsSquare then
    raise EMathException.Create('BackSubstitution: Coefficient matrix isn''t square.');

  if A.Size.Cols <> Y.Dimension then
    raise EMathException.Create('BackSubstitution: RHS is of wrong dimension.');

  Solution.Dimension := Y.Dimension;

  for i := A.Size.Rows - 1 downto 0 do
  begin
    row := A.RowData[i];
    Solution[i] := Y[i];
    for j := i + 1 to A.Size.Cols - 1 do
      Solution[i] := Solution[i] - row[j] * Solution[j];
    if IsZero(row[i]) then
      Exit(False)
    else
      Solution[i] := Solution[i] / row[i];
  end;

  Result := True;

end;

function BackSubstitution(const A: TRealMatrix; const Y: TRealVector): TRealVector;
begin

  if not TryBackSubstitution(A, Y, Result) then
    raise EMathException.Create('BackSubstitution: Matrix is singular.')

end;

function TryLUSysSolve(const A: TRealMatrix; const P: TIndexArray;
  const Y: TRealVector; out Solution: TRealVector): Boolean; overload;
var
  b, c: TRealVector;
  i: Integer;
begin

  if Y.Dimension <> Length(P) then
    raise EMathException.Create('TryLUSysSolve: RHS is of wrong dimension.');

  b := Y.Clone;
  for i := 0 to High(P) do
    if (P[i] <> -1) and (P[i] <> i) then
      TSwapper<TASR>.Swap(b.Data[i], b.Data[P[i]]);

  Result := TryForwardSubstitution(A, b, c, True) and
    TryBackSubstitution(A, c, Solution);

end;

/// <summary>Solves a linear system using a preformed LU decomposition of the
///  coefficient matrix.</summary>
function LUSysSolve(const A: TRealMatrix; const P: TIndexArray;
  const Y: TRealVector): TRealVector; overload;
var
  b: TRealVector;
  i: Integer;
begin

  if Y.Dimension <> Length(P) then
    raise EMathException.Create('LUSysSolve: RHS is of wrong dimension.');

  b := Y.Clone;
  for i := 0 to High(P) do
    if (P[i] <> -1) and (P[i] <> i) then
      TSwapper<TASR>.Swap(b.Data[i], b.Data[P[i]]);

  b := ForwardSubstitution(A, b, True);
  Result := BackSubstitution(A, b);

end;

function TrySysSolve(const A: TRealMatrix; const Y: TRealVector;
  out Solution: TRealVector): Boolean;
var
  LU: TRealMatrix;
  P: TIndexArray;
begin
  A.DoQuickLU(LU, P);
  Result := TryLUSysSolve(LU, P, Y, Solution);
end;

function TrySysSolve(const A: TRealMatrix; const Y: TRealMatrix;
  out Solution: TRealMatrix): Boolean;
var
  LU: TRealMatrix;
  P: TIndexArray;
  i: Integer;
  sol: TRealVector;
begin
  A.DoQuickLU(LU, P);
  Solution := TRealMatrix.CreateUninitialized(Y.Size);
  for i := 0 to Y.Size.Cols - 1 do
    if TryLUSysSolve(LU, P, Y.Cols[i], sol) then
      Solution.Cols[i] := sol
    else
      Exit(False);
  Result := True;
end;

function SysSolve(const AAugmented: TRealMatrix): TRealVector;
begin
  Result := SysSolve(AAugmented.Lessened, AAugmented.LastColumn);
end;

function SysSolve(const A: TRealMatrix; const Y: TRealVector): TRealVector;
var
  LU: TRealMatrix;
  P: TIndexArray;
begin
  if not A.IsSquare then
    raise EMathException.Create('Coefficient matrix isn''t square.');
  A.DoQuickLU(LU, P);
  Result := LUSysSolve(LU, P, Y);
end;

function SysSolve(const A: TRealMatrix; const Y: TRealMatrix): TRealMatrix; overload;
var
  LU: TRealMatrix;
  P: TIndexArray;
  i: Integer;
begin
  if not A.IsSquare then
    raise EMathException.Create('Coefficient matrix isn''t square.');
  A.DoQuickLU(LU, P);
  Result := TRealMatrix.CreateUninitialized(Y.Size);
  for i := 0 to Y.Size.Cols - 1 do
  begin
    Result.Cols[i] := LUSysSolve(LU, P, Y.Cols[i]);
    DoYield;
  end;
end;

function LeastSquaresPolynomialFit(const X, Y: TRealVector; ADegree: Integer): TRealVector;
var
  A, At: TRealMatrix;
begin
  if X.Dimension <> Y.Dimension then
    raise EMathException.Create('LeastSquaresPolynomialFit: X and Y vectors must have the same dimension.');
  if ADegree < 0 then
    raise EMathException.Create('LeastSquaresPolynomialFit: Polynomial degree must be non-negative.');
  A := VandermondeMatrix(X.Data, ADegree + 1);
  At := A.Transpose;
  Result := SysSolve(At * A, TRealVector(At * Y));
end;

procedure VectMove(const ASource: TRealVector; const AFrom, ATo: Integer;
  var ATarget: TRealVector; const ATargetFrom: Integer = 0);
begin
  Move(ASource.Data[AFrom], ATarget.Data[ATargetFrom],
    (ATo - AFrom + 1) * SizeOf(TASR));
end;

procedure VectMoveToMatCol(const ASource: TRealVector; const AFrom, ATo: Integer;
  var ATarget: TRealMatrix; const ATargetCol: Integer;
  const ATargetFirstRow: Integer = 0);
var
  index: Integer;
  i: Integer;
begin
  index := ATargetFirstRow * ATarget.Size.Cols + ATargetCol;
  for i := AFrom to ATo do
  begin
    ATarget.Data[index] := ASource[i];
    Inc(index, ATarget.Size.Cols);
  end;
end;

procedure VectMoveToMatRow(const ASource: TRealVector; const AFrom, ATo: Integer;
  var ATarget: TRealMatrix; const ATargetRow: Integer;
  const ATargetFirstCol: Integer = 0);
begin
  Move(ASource.Data[AFrom], ATarget.RowData[ATargetRow][ATargetFirstCol],
    (ATo - AFrom + 1) * SizeOf(TASR));
end;

procedure MatMove(const ASource: TRealMatrix; const ARect: TRect;
  var ATarget: TRealMatrix; const ATargetTopLeft: TPoint);
var
  y: Integer;
begin
  for y := 0 to ARect.Bottom - ARect.Top do
    Move(ASource.RowData[ARect.Top + y][ARect.Left],
      ATarget.RowData[ATargetTopLeft.Y + y][ATargetTopLeft.X],
      (ARect.Right - ARect.Left + 1) * SizeOf(TASR));
end;

procedure MatMove(const ASource: TRealMatrix; var ATarget: TRealMatrix;
  const ATargetTopLeft: TPoint); overload;
begin
  MatMove(ASource, Rect(0, 0, ASource.Size.Cols - 1, ASource.Size.Rows - 1),
    ATarget, ATargetTopLeft);
end;

procedure MatMoveColToVect(const ASource: TRealMatrix; const AColumn: Integer;
  const AFrom, ATo: Integer; var ATarget: TRealVector;
  const ATargetFrom: Integer = 0);
var
  index: Integer;
  i: Integer;
begin
  index := AColumn + AFrom * ASource.Size.Cols;
  for i := ATargetFrom to ATargetFrom + ATo - AFrom do
  begin
    ATarget.Data[i] := ASource.Data[index];
    Inc(index, ASource.Size.Cols);
  end;
end;

procedure MatMoveRowToVect(const ASource: TRealMatrix; const ARow: Integer;
  const AFrom, ATo: Integer; var ATarget: TRealVector;
  const ATargetFrom: Integer = 0);
begin
  Move(ASource.RowData[ARow][AFrom], ATarget.Data[ATargetFrom],
    (ATo - AFrom + 1) * SizeOf(TASR));
end;

procedure MatMulBlockInplaceL(var ATarget: TRealMatrix; const ARect: TRect;
  const AFactor: TRealMatrix);
var
  prod: TRealMatrix;
  Large: Boolean;
  i, j, k: Integer;
  row1, row2: PASR;
begin
  prod := TRealMatrix.CreateUninitialized(
    TMatrixSize.Create(AFactor.Size.Rows, ARect.Right - ARect.Left + 1));
  Large := prod.Size.ElementCount > 100000;
  for i := 0 to prod.Size.Rows - 1 do
  begin
    row1 := prod.RowData[i];
    row2 := AFactor.RowData[i];
    for j := 0 to prod.Size.Cols - 1 do
    begin
      row1[j] := 0;
      for k := 0 to AFactor.Size.Cols - 1 do
        row1[j] := row1[j] + row2[k] * ATarget[ARect.Top + k, ARect.Left + j];
    end;
    if Large then
      DoYield;
  end;
  MatMove(prod, ATarget, ARect.TopLeft);
end;

procedure MatMulBlockInplaceL(var ATarget: TRealMatrix; const ATopLeft: TPoint;
  const AFactor: TRealMatrix);
begin
  MatMulBlockInplaceL(ATarget,
    Rect(ATopLeft.X, ATopLeft.Y,
      ATopLeft.X + AFactor.Size.Cols - 1, ATopLeft.Y + AFactor.Size.Rows - 1),
    AFactor);
end;

procedure MatMulBottomRight(var ATarget: TRealMatrix; const AFactor: TRealMatrix);
var
  prod: TRealMatrix;
  n, m, d: Integer;
  Large: Boolean;
  y, x: Integer;
  k: Integer;
  row1, row2: PASR;
begin
  n := ATarget.Size.Rows;
  m := AFactor.Size.Rows;
  Large := n * m > 100000;
  d := n - m;
  prod := TRealMatrix.CreateUninitialized(TMatrixSize.Create(n, m));
  for y := 0 to n - 1 do
  begin
    row1 := prod.RowData[y];
    row2 := ATarget.RowData[y];
    for x := 0 to m - 1 do
    begin
      row1[x] := 0;
      for k := 0 to m - 1 do
        row1[x] := row1[x] + row2[d + k] * AFactor[k, x];
    end;
    if Large then
      DoYield;
  end;
  MatMove(prod, ATarget, Point(d, 0));
end;

procedure MatBlockFill(var ATarget: TRealMatrix; const ARect: TRect;
  const Value: TASR);
var
  y: Integer;
  row: PASR;
  x: Integer;
begin
  for y := ARect.Top to ARect.Bottom do
  begin
    row := ATarget.RowData[y];
    for x := ARect.Left to ARect.Right do
      row[x] := Value;
  end;
end;


{ **************************************************************************** }
{ Complex matrices                                                             }
{ **************************************************************************** }

const
  // Notice: there isn't a unique empty matrix, so don't compare against this
  // one; instead, use TComplexMatrix.IsEmpty.
  _EmptyComplexMatrix: TComplexMatrix = (FSize: (FRows: 0; FCols: 0); FElements: nil;
    FRowOpSeq: nil; FRowOpCount: 0; FRowOpFactor: (Re: 0; Im: 0); _FCollectRowOpData: False);

//constructor TComplexMatrix.CreateWithoutAllocation(const ASize: TMatrixSize);
//begin
//  FSize := ASize;
//  FElements := nil;
//  _FCollectRowOpData := False;
//end;

constructor TComplexMatrix.CreateUninitialized(const ASize: TMatrixSize);
begin
  Alloc(ASize);
end;

constructor TComplexMatrix.Create(const AMatrix: TComplexMatrix);
begin
  Alloc(AMatrix.Size);
  Move(AMatrix.Data[0], FElements[0], Length(Self.Data) * SizeOf(TASC));
end;

constructor TComplexMatrix.Create(const Elements: array of TASCArray);
var
  rc, cc: Integer;
  i: Integer;
begin

  rc := Length(Elements);
  cc := 0;
  if rc > 0 then
    cc := Length(Elements[0]);

  Alloc(rc, cc);

  for i := 0 to rc - 1 do
  begin
    if Length(Elements[i]) <> cc then
      raise EMathException.Create('Attempt to create a non-rectangular matrix.');
    Move(Elements[i][0], FElements[i*cc], cc*SizeOf(Elements[i][0]));
  end;

end;

constructor TComplexMatrix.Create(const Elements: array of TASC; Cols: Integer = 1);
begin

  if Cols <= 0 then
    raise EMathException.Create('A matrix must have size at least 1×1.');

  if Length(Elements) mod Cols <> 0 then
    raise EMathException.Create('Attempt to create a non-rectangular matrix.');

  Alloc(Length(Elements) div Cols, Cols);
  Move(Elements[0], FElements[0], Length(Elements) * SizeOf(Elements[0]));

end;

constructor TComplexMatrix.Create(const ASize: TMatrixSize; const AVal: TASC);
var
  i: Integer;
begin
  Alloc(ASize);
  for i := 0 to FSize.ElementCount - 1 do
    FElements[i] := AVal;
end;

constructor TComplexMatrix.CreateFromRows(const Rows: array of TComplexVector);
var
  rc, cc: Integer;
  i: Integer;
begin

  rc := Length(Rows);
  cc := 0;
  if rc > 0 then
    cc := Rows[0].Dimension;

  Alloc(rc, cc);

  for i := 0 to rc - 1 do
  begin
    if Rows[i].Dimension <> cc then
      raise EMathException.Create('Attempt to create a non-rectangular matrix.');
    Move(Rows[i].Data[0], FElements[i*cc], cc*SizeOf(Rows[i][0]));
  end;

end;

constructor TComplexMatrix.CreateFromColumns(const Columns: array of TComplexVector);
var
  rc, cc: Integer;
  i: Integer;
begin

  cc := Length(Columns);
  rc := 0;
  if cc > 0 then
    rc := Columns[0].Dimension;

  Alloc(rc, cc);

  for i := 0 to cc - 1 do
    if Columns[i].Dimension <> rc then
      raise EMathException.Create('Attempt to create a non-rectangular matrix.');

  for i := 0 to FSize.ElementCount - 1 do
    FElements[i] := Columns[i mod cc][i div cc];

end;

constructor TComplexMatrix.Create(const u: TComplexVector; const v: TComplexVector);
var
  i: Integer;
begin

  Alloc(u.Dimension, v.Dimension);

  for i := 0 to Size.ElementCount - 1 do
    FElements[i] := u[i div Size.Cols] * v[i mod Size.Cols].Conjugate;

end;

constructor TComplexMatrix.Create(const ASize: TMatrixSize; AFunction: TMatrixIndexFunction<TASC>);
var
  i: Integer;
begin

  Alloc(ASize);

  for i := 0 to Size.ElementCount - 1 do
    FElements[i] := AFunction(i div Size.Cols + 1, i mod Size.Cols + 1);

end;

constructor TComplexMatrix.CreateDiagonal(const Elements: array of TASC);
var
  i: Integer;
begin

  Alloc(Length(Elements));

  FillChar(FElements[0], Size.ElementCount * SizeOf(FElements[0]), 0);
  for i := 0 to Size.Cols - 1 do
    FElements[i * (Size.Cols + 1)] := Elements[i];

end;

constructor TComplexMatrix.CreateDiagonal(const Elements: TComplexVector);
begin
  CreateDiagonal(Elements.Data);
end;

constructor TComplexMatrix.CreateDiagonal(ASize: Integer; AVal: TASC);
var
  i: Integer;
begin

  Alloc(ASize);

  FillChar(FElements[0], Size.ElementCount * SizeOf(FElements[0]), 0);
  for i := 0 to Size.Cols - 1 do
    FElements[i * (Size.Cols + 1)] := AVal;

end;

constructor TComplexMatrix.Create(const Blocks: array of TComplexMatrix; Cols: Integer = 2);
var
  Rows: Integer;
  RowRows, RowTops, ColCols, ColLefts: array of Integer;
  i: Integer;
  j: Integer;
  index: Integer;
begin

  if Length(Blocks) = 0 then
    raise EMathException.Create('Invalid block matrix construction: the number of blocks has to be at least 1.');

  if Cols < 1 then
    raise EMathException.Create('Invalid block matrix construction: the number of blocks per row has to be at least 1.');

  if Cols > Length(Blocks) then
    raise EMathException.Create('Invalid block matrix construction: too few blocks to fill the first row.');

  Rows := Length(Blocks) div Cols;
  if Length(Blocks) mod Cols <> 0 then
    Inc(Rows);

  SetLength(RowRows, Rows);
  SetLength(RowTops, Rows + 1);
  SetLength(ColCols, Cols);
  SetLength(ColLefts, Cols + 1);

  for i := 0 to Cols - 1 do
    ColCols[i] := Blocks[i].Size.Cols;

  ColLefts[0] := 0;
  for i := 1 to Cols do
    ColLefts[i] := ColLefts[i - 1] + ColCols[i - 1];

  for i := 0 to Rows - 1 do
    RowRows[i] := Blocks[i * Cols].Size.Rows;

  RowTops[0] := 0;
  for i := 1 to Rows do
    RowTops[i] := RowTops[i - 1] + RowRows[i - 1];

  index := 0;
  for i := 0 to Rows - 1 do
    for j := 0 to Cols - 1 do
    begin
      if index < Length(Blocks) then
        with Blocks[index] do
          if (Size.Rows <> RowRows[i]) or (Size.Cols <> ColCols[j]) or (Size.ElementCount < 1) then
            raise EMathException.CreateFmt('Invalid block matrix construction: invalid block at position (%d, %d), index %d.', [i + 1, j + 1, index + 1]);
      Inc(index);
    end;

  // All arguments validated

  Alloc(RowTops[Rows], ColLefts[Cols]);

  index := 0;
  for i := 0 to Rows - 1 do
    for j := 0 to Cols - 1 do
    begin
      if index < Length(Blocks) then
        MatMove(Blocks[index], Self, Point(ColLefts[j], RowTops[i]))
      else
      begin
        MatBlockFill(Self, Rect(ColLefts[j], RowTops[i], Self.Size.Cols - 1, Self.Size.Rows - 1), 0);
        break;
      end;
      Inc(index);
    end;

end;

function TComplexMatrix.GetElement(Row: Integer; Col: Integer): TASC;
begin
  Result := FElements[Size.Cols * Row + Col];
end;

procedure TComplexMatrix.SetElement(Row: Integer; Col: Integer; const Value: TASC);
begin
  FElements[Size.Cols * Row + Col] := Value;
end;

procedure TComplexMatrix.Alloc(ARows: Integer; ACols: Integer);
begin
  FSize.Create(ARows, ACols);
  SetLength(FElements, Size.ElementCount);
  _FCollectRowOpData := False;
end;

procedure TComplexMatrix.Alloc(ASize: Integer);
begin
  FSize.Create(ASize);
  SetLength(FElements, Size.ElementCount);
  _FCollectRowOpData := False;
end;

procedure TComplexMatrix.Alloc(const ASize: TMatrixSize);
begin
  FSize := ASize;
  SetLength(FElements, Size.ElementCount);
  _FCollectRowOpData := False;
end;

function TComplexMatrix.GetRowData(AIndex: Integer): PASC;
begin
  Result := @FElements[Size.Cols * AIndex];
end;

function TComplexMatrix.SafeGetRowData(AIndex: Integer): PASC;
begin
  if not InRange(AIndex, 0, Size.Rows - 1) then
    raise Exception.Create('The specified row does not exist.');
  Result := GetRowData(AIndex);
end;

function TComplexMatrix.SafeSort(AComparer: IComparer<TASC>): TComplexMatrix;
begin
  TComplexVector(FElements).SafeSort(AComparer);
  Result := Self;
end;

function TComplexMatrix.GetMemorySize: Int64;
begin
  Result := SizeOf(Self) + Length(FElements) * SizeOf(TASC) +
    Length(FRowOpSeq) * SizeOf(TComplexRowOperationRecord);
end;

function TComplexMatrix.IsEmpty: Boolean;
begin
  Result := Size.ElementCount = 0;
end;

procedure TComplexMatrix.BeginCollectRowOpData;
begin
  Assert(InitialRowOpSeqSize > 0); // required by AddRowOpRecord
  SetLength(FRowOpSeq, InitialRowOpSeqSize);
  FRowOpCount := 0;
  FRowOpFactor := 1;
  _FCollectRowOpData := True;
end;

//procedure TComplexMatrix.EndCollectRowOpData;
//begin
//  SetLength(FRowOpSeq, 0);
//  _FCollectRowOpData := False;
//end;

procedure TComplexMatrix.AddRowOpRecord(AType: TRowOperationType; ARow1,
  ARow2: Integer; AFactor: TASC);
begin
  Assert(_FCollectRowOpData);

  if FRowOpCount = Length(FRowOpSeq) then
    SetLength(FRowOpSeq, 2*FRowOpCount);
  FRowOpSeq[FRowOpCount].RowOperationType := AType;
  FRowOpSeq[FRowOpCount].Row1 := ARow1;
  FRowOpSeq[FRowOpCount].Row2 := ARow2;
  FRowOpSeq[FRowOpCount].Factor := AFactor;
  Inc(FRowOpCount);
  case AType of
    roSwap:
      FRowOpFactor := -FRowOpFactor;
    roScale:
      FRowOpFactor := FRowOpFactor * AFactor;
    roAddMul: ;
  end;
end;

function TComplexMatrix.Eigenvalues2x2: TComplexVector;
var
  a, b, c, d, ad, bc, avg, avgsq, disc, rt: TASC;
begin

  a := Self[0, 0];
  b := Self[0, 1];
  c := Self[1, 0];
  d := Self[1, 1];

  ad := a * d;
  bc := b * c;

  if SameValue2(a, -d) then
    avg := 0
  else
    avg := (a + d) / 2;

  avgsq := avg * avg;

  if SameValue2(ad, bc) then
    disc := avgsq
  else
    if SameValue2(avgsq, ad - bc) then
      disc := 0
    else
      disc := avgsq - ad + bc;

  if disc = 0 then
    Exit( avg * ASC2(1, 1) );

  rt := csqrt(disc);

  Exit( avg * ASC2(1, 1) + rt * ASC2(1, -1) );

end;

procedure TComplexMatrix.DoQuickLU(out A: TComplexMatrix; out P: TIndexArray);
var
  y: Integer;
  yp: Integer;
  maxval, newval: TASR;
  maxpos: Integer;
  x: Integer;
  row1, row2: PASC;
begin

  if not IsSquare then
    raise EMathException.Create('LU decomposition only implemented for square matrices.');

  RequireNonEmpty;

  A := Clone;
  SetLength(P, Size.Rows);

  for y := 0 to Size.Rows - 2 do
  begin
    row1 := A.RowData[y];
    maxpos := A.Size.Rows - 1;
    maxval := A[Size.Rows - 1, y].ModSqr;
    for yp := A.Size.Rows - 2 downto y do
    begin
      newval := A[yp, y].ModSqr;
      if newval > maxval then
      begin
        maxval := newval;
        maxpos := yp;
      end;
    end;
    if CIsZero(maxval) then
      P[y] := -1
    else
    begin
      P[y] := maxpos;
      if maxpos <> y then
        A.RowSwap(maxpos, y);
      for yp := y + 1 to Size.Rows - 1 do
      begin
        row2 := A.RowData[yp];
        row2[y] := row2[y] / row1[y];
        for x := y + 1 to Size.Cols - 1 do
          row2[x] := row2[x] - row2[y] * row1[x];
      end;
    end;
    DoYield;
  end;

  if CIsZero(A.Data[A.Size.ElementCount - 1]) then
    P[Size.Rows - 1] := -1
  else
    P[Size.Rows - 1] := Size.Rows - 1;

end;

class operator TComplexMatrix.Implicit(const u: TComplexVector): TComplexMatrix;
begin
  if u.Dimension = 0 then
    Exit(_EmptyMatrix);
  Result.Alloc(TMatrixSize.CreateUnsafe(u.Dimension, 1));
  if u.Dimension > 0 then
    Move(u.Data[0], Result.Data[0], u.Dimension * SizeOf(TASC));
end;

class operator TComplexMatrix.Implicit(const A: TRealMatrix): TComplexMatrix;
var
  i: Integer;
begin
  Result.Alloc(A.Size);
  for i := 0 to A.Size.ElementCount - 1 do
    Result.Data[i] := A.Data[i];
end;

class operator TComplexMatrix.Explicit(const A: TComplexMatrix): TComplexVector;
begin
  if A.IsColumn then
    Result := TComplexVector(A.Data)
  else
    raise EMathException.Create('Cannot treat matrix as vector if it isn''t a column vector.');
end;

class operator TComplexMatrix.Explicit(X: TASC): TComplexMatrix;
const
  ScalarSize: TMatrixSize = (FRows: 1; FCols: 1);
begin
  Result.Alloc(ScalarSize);
  Move(X, Result.Data[0], SizeOf(TASC));
end;

class operator TComplexMatrix.Negative(const A: TComplexMatrix): TComplexMatrix;
var
  i: Integer;
begin
  Result := TComplexMatrix.CreateUninitialized(A.Size);
  for i := 0 to A.Size.ElementCount - 1 do
    Result.Data[i] := -A.Data[i];
end;

class operator TComplexMatrix.Add(const A, B: TComplexMatrix): TComplexMatrix;
var
  i: Integer;
begin
  if A.Size <> B.Size then
    raise EMathException.Create('Cannot add two matrices of different sizes.');
  Result := TComplexMatrix.CreateUninitialized(A.Size);
  for i := 0 to A.Size.ElementCount - 1 do
    Result.Data[i] := A.Data[i] + B.Data[i];
end;

class operator TComplexMatrix.Add(const A: TComplexMatrix; const X: TASC): TComplexMatrix;
var
  i: Integer;
begin
  Result := TComplexMatrix.CreateUninitialized(A.Size);
  for i := 0 to A.Size.ElementCount - 1 do
    Result.Data[i] := A.Data[i] + X;
end;

class operator TComplexMatrix.Subtract(const A, B: TComplexMatrix): TComplexMatrix;
var
  i: Integer;
begin
  if A.Size <> B.Size then
    raise EMathException.Create('Cannot subtract two matrices of different sizes.');
  Result := TComplexMatrix.CreateUninitialized(A.Size);
  for i := 0 to A.Size.ElementCount - 1 do
    Result.Data[i] := A.Data[i] - B.Data[i];
end;

class operator TComplexMatrix.Subtract(const A: TComplexMatrix; const X: TASC): TComplexMatrix;
var
  i: Integer;
begin
  Result := TComplexMatrix.CreateUninitialized(A.Size);
  for i := 0 to A.Size.ElementCount - 1 do
    Result.Data[i] := A.Data[i] - X;
end;

class operator TComplexMatrix.Multiply(const A, B: TComplexMatrix): TComplexMatrix;
var
  i: Integer;
  j: Integer;
  k: Integer;
  row1, row2: PASC;
begin

  if A.Size.Cols <> B.Size.Rows then
    raise EMathException.Create('When multiplying two matrices, the number of columns in the first matrix has to equal the number of rows in the second matrix.');

  Result := TComplexMatrix.CreateUninitialized(TMatrixSize.Create(A.Size.Rows, B.Size.Cols));

  for i := 0 to Result.Size.Rows - 1 do
  begin
    row1 := Result.RowData[i];
    row2 := A.RowData[i];
    for j := 0 to Result.Size.Cols - 1 do
    begin
      row1[j] := 0;
      for k := 0 to A.Size.Cols - 1 do
        row1[j] := row1[j] + row2[k] * B[k, j];
    end;
  end;

end;

class operator TComplexMatrix.Multiply(const X: TASC; const A: TComplexMatrix): TComplexMatrix;
var
  i: Integer;
begin
  Result := TComplexMatrix.CreateUninitialized(A.Size);
  for i := 0 to A.Size.ElementCount - 1 do
    Result.Data[i] := A.Data[i] * X;
end;

class operator TComplexMatrix.Multiply(const A: TComplexMatrix; const X: TASC): TComplexMatrix;
var
  i: Integer;
begin
  Result := TComplexMatrix.CreateUninitialized(A.Size);
  for i := 0 to A.Size.ElementCount - 1 do
    Result.Data[i] := A.Data[i] * X;
end;

class operator TComplexMatrix.Divide(const A: TComplexMatrix; const X: TASC): TComplexMatrix;
var
  i: Integer;
begin
  Result := TComplexMatrix.CreateUninitialized(A.Size);
  for i := 0 to A.Size.ElementCount - 1 do
    Result.Data[i] := A.Data[i] / X;
end;

class operator TComplexMatrix.Equal(const A, B: TComplexMatrix): Boolean;
begin
  Result := (A.Size = B.Size) and (TComplexVector(A.Data) = TComplexVector(B.Data));
end;

class operator TComplexMatrix.NotEqual(const A, B: TComplexMatrix): Boolean;
begin
  Result := not (A = B);
end;

class operator TComplexMatrix.Trunc(const A: TComplexMatrix): TComplexMatrix;
begin
  Result := A.Apply(function(const X: TASC): TASC begin Result := System.Trunc(X) end);
end;

class operator TComplexMatrix.Round(const A: TComplexMatrix): TComplexMatrix;
begin
  Result := A.Apply(function(const X: TASC): TASC begin Result := System.Round(X) end);
end;

function TComplexMatrix.IsRow: Boolean;
begin
  Result := Size.Rows = 1;
end;

function TComplexMatrix.IsColumn: Boolean;
begin
  Result := Size.Cols = 1;
end;

function TComplexMatrix.IsSquare: Boolean;
begin
  Result := Size.Rows = Size.Cols;
end;

function TComplexMatrix.IsIdentity(const Epsilon: Extended): Boolean;
var
  i: Integer;
begin

  if not IsSquare then Exit(False);

  for i := 0 to Size.ElementCount - 1 do
    if not CSameValue(FElements[i], IversonBracket(i mod (Size.Cols + 1) = 0), Epsilon) then
      Exit(False);

  Result := True;

end;

function TComplexMatrix.IsZeroMatrix(const Epsilon: Extended): Boolean;
var
  i: Integer;
begin

  for i := 0 to Size.ElementCount - 1 do
    if not CIsZero(FElements[i], Epsilon) then
      Exit(False);

  Result := True;

end;

function TComplexMatrix.IsDiagonal(const Epsilon: Extended): Boolean;
var
  x, y: Integer;
  row: PASC;
begin

  for y := 0 to Size.Rows - 1 do
  begin
    row := RowData[y];
    for x := 0 to Size.Cols - 1 do
      if (y <> x) and not CIsZero(row[x], Epsilon) then
        Exit(False);
  end;

  Result := True;

end;

function TComplexMatrix.IsAntiDiagonal(const Epsilon: Extended): Boolean;
var
  y: Integer;
  x: Integer;
  row: PASC;
begin

  if not IsSquare then Exit(False);

  for y := 0 to Size.Rows - 1 do
  begin
    row := RowData[y];
    for x := 0 to Size.Cols - 1 do
      if (x <> Size.Cols - 1 - y) and not CIsZero(row[x], Epsilon) then
        Exit(False);
  end;

  Result := True;

end;

function TComplexMatrix.IsReversal(const Epsilon: Extended): Boolean;
var
  x: TASC;
begin
  Result := IsAntiDiagonal(Epsilon);
  if Result then
    for x in Antidiagonal.Data do
      if not CSameValue(x, 1, Epsilon) then
        Exit(False);
end;

function TComplexMatrix.IsUpperTriangular(const Epsilon: Extended): Boolean;
var
  y: Integer;
  x: Integer;
  row: PASC;
begin

  for y := 1 to Size.Rows - 1 do
  begin
    row := RowData[y];
    for x := 0 to Min(y, Size.Cols) - 1 do
      if not CIsZero(row[x], Epsilon) then
        Exit(False);
  end;

  Result := True;

end;

function TComplexMatrix.IsLowerTriangular(const Epsilon: Extended): Boolean;
var
  y: Integer;
  x: Integer;
  row: PASC;
begin

  for y := 0 to Size.Rows - 1 do
  begin
    row := RowData[y];
    for x := y + 1 to Size.Cols - 1 do
      if not CIsZero(row[x], Epsilon) then
        Exit(False);
  end;

  Result := True;

end;

function TComplexMatrix.IsTriangular(const Epsilon: Extended): Boolean;
begin
  Result := IsUpperTriangular(Epsilon) or IsLowerTriangular(Epsilon);
end;

function TComplexMatrix.PivotPos(ARow: Integer; const Epsilon: Extended): Integer;
var
  x: Integer;
  row: PASC;
begin
  row := SafeRowData[ARow];
  for x := 0 to Size.Cols - 1 do
    if not CIsZero(row[x], Epsilon) then
      Exit(x);
  Result := -1;
end;

function TComplexMatrix.IsZeroRow(ARow: Integer; const Epsilon: Extended): Boolean;
begin
  Result := PivotPos(ARow, Epsilon) = -1;
end;

function TComplexMatrix.kNorm(const k: Integer): TASR;
begin
  Result := TComplexVector(FElements).kNorm(k);
end;

function TComplexMatrix.IsEssentiallyZeroRow(ARow: Integer; const Epsilon: Extended): Boolean;
var
  pp: Integer;
begin
  pp := PivotPos(ARow, Epsilon);
  Result := (pp = -1) or (pp = Size.Cols - 1);
end;

function TComplexMatrix.IsRowEchelonForm(const Epsilon: Extended): Boolean;
var
  y: Integer;
  p, prep: Integer;
begin
  prep := -1;
  for y := Size.Rows - 1 downto 0 do
  begin
    p := PivotPos(y, Epsilon);
    if (prep > -1) and ((p = -1) or (p >= prep)) then
      Exit(False);
    prep := p;
  end;
  Result := True;
end;

function TComplexMatrix.IsReducedRowEchelonForm(const Epsilon: Extended): Boolean;
var
  y: Integer;
  p, prep: Integer;
  yp: Integer;
begin
  prep := -1;
  for y := Size.Rows - 1 downto 0 do
  begin
    p := PivotPos(y, Epsilon);
    if (prep > -1) and ((p = -1) or (p >= prep)) then
      Exit(False);
    if p > -1 then
    begin
      if not CSameValue(Self[y, p], 1, Epsilon) then
        Exit(False);
      for yp := y - 1 downto 0 do
        if not CIsZero(Self[yp, p], Epsilon) then
          Exit(False);
    end;
    prep := p;
  end;
  Result := True;
end;

function TComplexMatrix.IsScalar(const Epsilon: Extended): Boolean;
var
  val: TASC;
  i: Integer;
begin

  Result := IsSquare and IsDiagonal(Epsilon);
  if not Result then
    Exit;

  if Size.ElementCount = 0 then
    Exit(True);

  val := FElements[0];
  for i := 1 to Size.Rows - 1 do
    if not CSameValue(Self[i, i], val, Epsilon) then
      Exit(False);

end;

function TComplexMatrix.IsSymmetric(const Epsilon: Extended): Boolean;
begin
  Result := IsSquare and SameMatrixEx(Self, Transpose, Epsilon);
end;

function TComplexMatrix.IsSkewSymmetric(const Epsilon: Extended): Boolean;
begin
  Result := IsSquare and SameMatrixEx(Self, -Transpose, Epsilon);
end;

function TComplexMatrix.IsHermitian(const Epsilon: Extended): Boolean;
begin
  Result := IsSquare and SameMatrixEx(Self, Adjoint, Epsilon);
end;

function TComplexMatrix.IsSkewHermitian(const Epsilon: Extended): Boolean;
begin
  Result := IsSquare and SameMatrixEx(Self, -Adjoint, Epsilon);
end;

function TComplexMatrix.IsOrthogonal(const Epsilon: Extended): Boolean;
begin
  Result := IsSquare and (Transpose * Self).IsIdentity(Epsilon);
end;

function TComplexMatrix.IsUnitary(const Epsilon: Extended): Boolean;
begin
  Result := IsSquare and (Adjoint * Self).IsIdentity(Epsilon);
end;

function TComplexMatrix.IsNormal(const Epsilon: Extended): Boolean;
begin
  Result := CommutesWith(Adjoint, Epsilon);
end;

function TComplexMatrix.IsBinary(const Epsilon: Extended): Boolean;
var
  i: Integer;
begin

  for i := 0 to Size.ElementCount - 1 do
    if not (CSameValue(FElements[i], 0, Epsilon) or CSameValue(FElements[i], 1, Epsilon)) then
      Exit(False);

  Result := True;

end;

function TComplexMatrix.IsPermutation(const Epsilon: Extended): Boolean;
var
  y, x: Integer;
  c: Integer;
begin

  Result := IsSquare and IsBinary(Epsilon);
  if not Result then
    Exit;

  for y := 0 to Size.Rows - 1 do
  begin
    c := 0;
    for x := 0 to Size.Cols - 1 do
      if CSameValue(Self[y, x], 1, Epsilon) then
        Inc(c);
    if c <> 1 then
      Exit(False);
  end;

  for x := 0 to Size.Cols - 1 do
  begin
    c := 0;
    for y := 0 to Size.Rows - 1 do
      if CSameValue(Self[y, x], 1, Epsilon) then
        Inc(c);
    if c <> 1 then
      Exit(False);
  end;

end;

function TComplexMatrix.IsCirculant(const Epsilon: Extended): Boolean;
var
  y: Integer;
  x: Integer;
  row0, row: PASC;
begin

  row0 := RowData[0];
  for y := 1 to Size.Rows - 1 do
  begin
    row := RowData[y];
    for x := 0 to Size.Cols - 1 do
      if not CSameValue(row0[x], row[(x + y) mod Size.Cols], Epsilon) then
        Exit(False);
  end;

  Result := True;

end;

function TComplexMatrix.IsToeplitz(const Epsilon: Extended): Boolean;
var
  r1, c1: TComplexVector;
  y: Integer;
  x: Integer;

  function virtarr(index: Integer): TASC;
  begin
    if index <= 0 then
      Result := r1[-index]
    else
      Result := c1[index];
  end;

begin

  r1 := Self.Rows[0];
  c1 := Self.Cols[0];

  for y := 1 to Size.Rows - 1 do
    for x := 1 to Size.Cols - 1 do
      if not CSameValue(Self[y, x], virtarr(y - x), Epsilon) then
        Exit(False);

  Result := True;

end;

function TComplexMatrix.IsHankel(const Epsilon: Extended): Boolean;
var
  r1, cl: TComplexVector;
  y: Integer;
  x: Integer;

  function virtarr(index: Integer): TASC;
  begin
    if index >= Size.Cols then
      Result := cl[index - Size.Cols + 1]
    else
      Result := r1[index];
  end;

begin

  r1 := Self.Rows[0];
  cl := Self.Cols[Self.Size.Cols - 1];

  for y := 1 to Size.Rows - 1 do
    for x := 0 to Size.Cols - 2 do
      if not CSameValue(Self[y, x], virtarr(x + y), Epsilon) then
        Exit(False);

  Result := True;

end;

function TComplexMatrix.IsUpperHessenberg(const Epsilon: Extended): Boolean;
var
  y: Integer;
  x: Integer;
begin

  for y := 2 to Size.Rows - 1 do
    for x := 0 to Min(y - 2, Size.Cols - 1) do
      if not CIsZero(Self[y, x], Epsilon) then
        Exit(False);

  Result := True;

end;

function TComplexMatrix.IsLowerHessenberg(const Epsilon: Extended): Boolean;
var
  y: Integer;
  x: Integer;
begin

  for x := 2 to Size.Cols - 1 do
    for y := 0 to Min(x - 2, Size.Rows - 1) do
      if not CIsZero(Self[y, x], Epsilon) then
        Exit(False);

  Result := True;

end;

function TComplexMatrix.IsTridiagonal(const Epsilon: Extended): Boolean;
begin
  Result := IsSquare and IsUpperHessenberg(Epsilon) and IsLowerHessenberg(Epsilon);
end;

function TComplexMatrix.IsUpperBidiagonal(const Epsilon: Extended): Boolean;
begin
  Result := IsTridiagonal(Epsilon) and Subdiagonal.IsZeroVector(Epsilon);
end;

function TComplexMatrix.IsLowerBidiagonal(const Epsilon: Extended): Boolean;
begin
  Result := IsTridiagonal(Epsilon) and Superdiagonal.IsZeroVector(Epsilon);
end;

function TComplexMatrix.IsBidiagonal(const Epsilon: Extended): Boolean;
begin
  Result := IsTridiagonal(Epsilon) and
    (Subdiagonal.IsZeroVector(Epsilon) or Superdiagonal.IsZeroVector(Epsilon));
end;

function TComplexMatrix.IsCentrosymmetric(const Epsilon: Extended): Boolean;
var
  i, j: Integer;
begin

  Result := IsSquare;

  if not Result then
    Exit;

  for i := 0 to Size.Rows - 1 do
    for j := 0 to Size.Rows - 1 do
      if not CSameValue(Self[i, j], Self[Size.Rows - 1 - i, Size.Rows - 1 - j], Epsilon) then
        Exit(False);

  Result := True;

end;

function TComplexMatrix.IsVandermonde(const Epsilon: Extended): Boolean;
var
  y: Integer;
  x: Integer;
begin

  for y := 0 to Size.Rows - 1 do
  begin
    if not CSameValue(Self[y, 0], 1, Epsilon) then
      Exit(False);
    for x := 2 to Size.Cols - 1 do
      if not CSameValue(Self[y, x], cpow(Self[y, 1], x), Epsilon) then
        Exit(False);
  end;

  Result := True;

end;

function TComplexMatrix.CommutesWith(const A: TComplexMatrix; const Epsilon: Extended): Boolean;
begin
  Result := SameMatrixEx(Self * A, A * Self, Epsilon);
end;

function TComplexMatrix.IsIdempotent(const Epsilon: Extended): Boolean;
begin
  Result := IsSquare and SameMatrixEx(Self, Self * Self, Epsilon);
end;

function TComplexMatrix.IsInvolution(const Epsilon: Extended): Boolean;
begin
  Result := IsSquare and SameMatrixEx(Self * Self, ComplexIdentityMatrix(Size.Rows), Epsilon);
end;

function TComplexMatrix.IsPositiveDefinite(const Epsilon: Extended): Boolean;
begin
  Result := IsHermitian(Epsilon) and eigenvalues.RealPart.IsPositive;
end;

function TComplexMatrix.IsPositiveSemiDefinite(const Epsilon: Extended): Boolean;
begin
  Result := IsHermitian(Epsilon) and eigenvalues.RealPart.IsNonNegative;
end;

function TComplexMatrix.IsNegativeDefinite(const Epsilon: Extended): Boolean;
begin
  Result := IsHermitian(Epsilon) and (-eigenvalues).RealPart.IsPositive;
end;

function TComplexMatrix.IsNegativeSemiDefinite(const Epsilon: Extended): Boolean;
begin
  Result := IsHermitian(Epsilon) and (-eigenvalues).RealPart.IsNonNegative;
end;

function TComplexMatrix.IsIndefinite(const Epsilon: Extended): Boolean;
begin
  Result := IsHermitian(Epsilon) and not (IsPositiveSemiDefinite or IsNegativeSemiDefinite);
end;

function TComplexMatrix.IsNilpotent(const Epsilon: Extended): Boolean;
begin
  Result := IsSquare and (NilpotencyIndex(Epsilon) >= 0);
end;

function TComplexMatrix.NilpotencyIndex(const Epsilon: Extended): Integer;
var
  i: Integer;
  A: TComplexMatrix;
begin

  if not IsSquare then
    raise EMathException.Create('Cannot find nilpotency index of non-square matrix.');

  if not CIsZero(Trace, Epsilon) then
    Exit(-1);

  A := Self;
  for i := 1 to Size.Rows do
    if A.IsZeroMatrix(Epsilon) then
      Exit(i)
    else if i < Size.Rows then
      A := A * Self;

  Exit(-1);

end;

function TComplexMatrix.IsDiagonallyDominant: Boolean;
var
  y: Integer;
  d, r: TASR;
begin
  if not IsSquare then
    Exit(False);
  for y := 0 to Size.Rows - 1 do
  begin
    d := Self[y, y].Modulus;
    r := DeletedAbsoluteRowSum(y);
    if (d < r) and not SameValue(d, r) then
      Exit(False);
  end;
  Result := True;
end;

function TComplexMatrix.IsStrictlyDiagonallyDominant: Boolean;
var
  y: Integer;
  d, r: TASR;
begin
  if not IsSquare then
    Exit(False);
  for y := 0 to Size.Rows - 1 do
  begin
    d := Self[y, y].Modulus;
    r := DeletedAbsoluteRowSum(y);
    if (d < r) or SameValue(d, r) then
      Exit(False);
  end;
  Result := True;
end;

function TComplexMatrix.RealPart: TRealMatrix;
begin
  Result := TRealMatrix.CreateWithoutAllocation(Size);
  Result.Data := TComplexVector(Data).RealPart.Data;
end;

function TComplexMatrix.ImaginaryPart: TRealMatrix;
begin
  Result := TRealMatrix.CreateWithoutAllocation(Size);
  Result.Data := TComplexVector(Data).ImaginaryPart.Data;
end;

procedure TComplexMatrix.MakeLowerTriangular;
var
  i: Integer;
begin
  for i := 0 to Size.SmallestDimension - 1 do
    if Size.Cols - i > 1 then
      FillChar(RowData[i][i + 1], (Size.Cols - i - 1) * SizeOf(TASC), 0);
end;

procedure TComplexMatrix.MakeUpperTriangular;
var
  i: Integer;
begin
  for i := 1 to Size.Rows - 1 do
    FillChar(RowData[i][0], Min(i, Size.Cols) * SizeOf(TASC), 0);
end;

procedure TComplexMatrix.MakeUpperHessenberg;
var
  i: Integer;
begin
  for i := 2 to Size.Rows - 1 do
    FillChar(RowData[i][0], Min(i - 1, Size.Cols) * SizeOf(TASC), 0);
end;

function TComplexMatrix.Sqr: TComplexMatrix;
begin
  Result := Self * Self;
end;

function TComplexMatrix.Transpose: TComplexMatrix;
var
  y: Integer;
  x: Integer;
begin
  Result := TComplexMatrix.CreateUninitialized(Size.TransposeSize);
  for y := 0 to Size.Rows - 1 do
    for x := 0 to Size.Cols - 1 do
      Result[x, y] := Self[y, x];
end;

function TComplexMatrix.Adjoint: TComplexMatrix;
var
  y: Integer;
  x: Integer;
begin
  Result := TComplexMatrix.CreateUninitialized(Size.TransposeSize);
  for y := 0 to Size.Rows - 1 do
    for x := 0 to Size.Cols - 1 do
      Result[x, y] := Self[y, x].Conjugate;
end;

function TComplexMatrix.HermitianSquare: TComplexMatrix;
begin
  Result := Adjoint * Self;
end;

function TComplexMatrix.Modulus: TComplexMatrix;
begin
  Result := msqrt(HermitianSquare);
end;

function TComplexMatrix.Determinant: TASC;
var
  A: TComplexMatrix;
  P: TIndexArray;
begin

  if not IsSquare then
    raise EMathException.Create('Cannot compute determinant of non-square matrix.');

  DoQuickLU(A, P);
  Result := product(A.MainDiagonal) * __sign(P);

end;

function TComplexMatrix.Trace: TASC;
var
  i: Integer;
begin
  if not IsSquare then
    raise EMathException.Create('Cannot compute trace of non-square matrix.');
  Result := 0;
  for i := 0 to Size.Rows - 1 do
    Result := Result + GetElement(i, i);
end;

procedure TComplexMatrix.InplaceGramSchmidt(FirstCol, LastCol: Integer);
var
  i, j: Integer;
  v, w, c: TComplexVector;
begin

  if not InRange(FirstCol, 0, Size.Cols - 1) or not InRange(LastCol, FirstCol, Size.Cols - 1) then
    raise EMathException.Create('InplaceGramSchmidt: Invalid column indices.');

  if FirstCol = LastCol then
    Exit;

  for i := Succ(FirstCol) to LastCol do
  begin

    v := Cols[i];
    w := v;

    // Step 1: orthogonalize
    for j := FirstCol to i - 1 do
    begin
      c := Cols[j];
      w := w - (v * c) * c;
    end;

    v := w;

    // Step 2: reorthogonalize
    for j := FirstCol to i - 1 do
    begin
      c := Cols[j];
      w := w - (v * c) * c;
    end;

    // Step 3: normalize
    w.NormalizeIfNonzero;

    Cols[i] := w;

  end;

end;

function TComplexMatrix.Inverse: TComplexMatrix;
begin
  if not IsSquare then
    raise EMathException.Create('Cannot compute inverse of non-square matrix.');
  Result := SysSolve(Self, ComplexIdentityMatrix(Size.Rows));
end;

function TComplexMatrix.TryInvert(out AInverse: TComplexMatrix): Boolean;
begin
  Result := TrySysSolve(Self, ComplexIdentityMatrix(Size.Rows), AInverse);
end;

function TComplexMatrix.Rank: Integer;
begin
  Result := Size.Rows - RowEchelonForm.NumTrailingZeroRows;
end;

function TComplexMatrix.Nullity: Integer;
begin
  Result := Size.Cols - Rank;
end;

function TComplexMatrix.ConditionNumber(p: Integer = 2): TASR;
begin
  case p of
    1:
      Result := MaxColSumNorm * Inverse.MaxColSumNorm;
    2:
      Result := SpectralNorm * Inverse.SpectralNorm;
    INFTY:
      Result := MaxRowSumNorm * Inverse.MaxRowSumNorm;
  else
    raise EMathException.CreateFmt('ConditionNumber: Invalid norm: l%d.', [p]);
  end;
end;

function TComplexMatrix.IsSingular: Boolean;
begin
  if not IsSquare then
    raise EMathException.Create('TComplexMatrix.IsSingular: Matrix is not square.');
  Result := Rank < Size.Rows;
end;

function TComplexMatrix.Norm: TASR;
begin
  Result := TComplexVector(FElements).Norm;
end;

function TComplexMatrix.NormSqr: TASR;
begin
  Result := TComplexVector(FElements).NormSqr;
end;

function TComplexMatrix.pNorm(const p: TASR): TASR;
begin
  Result := TComplexVector(FElements).pNorm(p);
end;

function TComplexMatrix.MaxNorm: TASR;
begin
  Result := TComplexVector(FElements).MaxNorm;
end;

function TComplexMatrix.SumNorm: TASR;
begin
  Result := TComplexVector(FElements).SumNorm;
end;

function TComplexMatrix.MaxColSumNorm: TASR;
var
  ColSums: TRealVector;
  i: Integer;
begin
  ColSums.Dimension := Size.Cols;
  for i := 0 to Size.Cols - 1 do
    ColSums[i] := sum(Cols[i].Abs());
  Result := max(ColSums);
end;

function TComplexMatrix.MaxRowSumNorm: TASR;
var
  RowSums: TRealVector;
  i: Integer;
begin
  RowSums.Dimension := Size.Rows;
  for i := 0 to Size.Rows - 1 do
    RowSums[i] := sum(Rows[i].Abs());
  Result := max(RowSums);
end;

function TComplexMatrix.SpectralNorm: TASR;
begin
  Result := SingularValues[0];
end;

function TComplexMatrix.DeletedAbsoluteRowSum(ARow: Integer): TASR;
var
  j, i: Integer;
begin
  Result := 0;
  j := ARow * Size.Cols;
  for i := j to j + Size.Cols - 1 do
    Result := Result + FElements[i].Modulus;
  if ARow < Size.Cols then
    Result := Result - FElements[j + ARow].Modulus;
end;

function TComplexMatrix.RowSwap(ARow1: Integer; ARow2: Integer): TComplexMatrix;
var
  i: Integer;
  offset1, offset2: Integer;
begin
  offset1 := Size.Cols * ARow1;
  offset2 := Size.Cols * ARow2;
  for i := 0 to Size.Cols - 1 do
    TSwapper<TASC>.Swap(FElements[offset1 + i], FElements[offset2 + i]);
  Result := Self;
  if _FCollectRowOpData then AddRowOpRecord(roSwap, ARow1, ARow2, 0);
end;

function TComplexMatrix.RowScale(ARow: Integer; AFactor: TASC): TComplexMatrix;
var
  i: Integer;
  Row: PASC;
begin
  Row := RowData[ARow];
  for i := 0 to Size.Cols - 1 do
    Row[i] := AFactor * Row[i];
  Result := Self;
  if _FCollectRowOpData then AddRowOpRecord(roScale, ARow, ARow, AFactor);
end;

function TComplexMatrix.RowAddMul(ATarget: Integer; ASource: Integer; AFactor: TASC;
  ADefuzz: Boolean = False; AFirstCol: Integer = 0): TComplexMatrix;
var
  i: Integer;
  TargetRow, SourceRow: PASC;
begin
  TargetRow := RowData[ATarget];
  SourceRow := RowData[ASource];
  for i := AFirstCol to Size.Cols - 1 do
    TargetRow[i] := TargetRow[i] + AFactor * SourceRow[i];
  Result := Self;
  if _FCollectRowOpData then AddRowOpRecord(roAddMul, ATarget, ASource, AFactor);
  if ADefuzz then
    for i := AFirstCol to Size.Cols - 1 do
      if CIsZero(TargetRow[i]) then
        TargetRow[i] := 0;
end;

function TComplexMatrix.RowOp(const ARowOp: TComplexRowOperationRecord): TComplexMatrix;
begin
  case ARowOp.RowOperationType of
    roSwap:
      Result := Self.RowSwap(ARowOp.Row1, ARowOp.Row2);
    roScale:
      Result := Self.RowScale(ARowOp.Row1, ARowOp.Factor);
    roAddMul:
      Result := Self.RowAddMul(ARowOp.Row1, ARowOp.Row2, ARowOp.Factor);
  end;
end;

function TComplexMatrix.RowEchelonForm(CollectRowOps: Boolean): TComplexMatrix;
var
  top: Integer;
  x: Integer;
  y, maxy: Integer;
  maxval: TASR;
  pivot: TASC;
begin
  Result := Clone;
  if CollectRowOps then
    Result.BeginCollectRowOpData;
  for top := 0 to Size.Rows - 2 do
  begin
    x := 0;
    while x < Size.Cols do
    begin
      maxy := top;
      maxval := Result[top, x].Modulus;
      for y := top + 1 to Size.Rows - 1 do
        if Result[y, x].Modulus > maxval then
        begin
          maxy := y;
          maxval := Result[y, x].Modulus;
        end;
      if IsZero(maxval) then
      begin
        Inc(x);
        Continue;
      end;
      if maxy <> top then Result.RowSwap(top, maxy);
      pivot := Result[top, x];
      for y := top + 1 to Size.Rows - 1 do
        if not CIsZero(Result[y, x]) then
          Result.RowAddMul(y, top, - Result[y, x] / pivot, True);
      Break;
    end;
  end;
end;

function TComplexMatrix.ReducedRowEchelonForm(CollectRowOps: Boolean): TComplexMatrix;
var
  y, p: Integer;
  pivot: TASC;
  yp: Integer;
begin
  Result := RowEchelonForm(CollectRowOps); // a copy
  for y := Result.Size.Rows - 1 downto 0 do
  begin
    p := Result.PivotPos(y);
    if p = -1 then Continue;
    pivot := Result[y, p];
    if pivot <> 1 then
      Result.RowScale(y, 1/pivot);
    for yp := y - 1 downto 0 do
      if not CIsZero(Result[yp, p]) then
        Result.RowAddMul(yp, y, -Result[yp, p], True);
  end;
end;

function TComplexMatrix.NumZeroRows(const AEpsilon: TASR): Integer;
var
  i: Integer;
begin
  Result := 0;
  for i := 0 to Size.Rows - 1 do
    if IsZeroRow(i, AEpsilon) then
      Inc(Result);
end;

function TComplexMatrix.NumTrailingZeroRows(const AEpsilon: TASR): Integer;
var
  i: Integer;
begin
  Result := 0;
  for i := Size.Rows - 1 downto 0 do
    if IsZeroRow(i, AEpsilon) then
      Inc(Result)
    else
      Break;
end;

function TComplexMatrix.GramSchmidt: TComplexMatrix;
var
  i: Integer;
  v, w, c: TComplexVector;
  j: Integer;
  cols: array of TComplexVector;
begin

  SetLength(cols, Size.Cols);
  for i := 0 to Size.Cols - 1 do
    cols[i] := Self.Cols[i];

  for i := 0 to Size.Cols - 1 do
  begin
    v := cols[i];
    w := v;

    // Step 1: orthogonalize
    for j := 0 to i - 1 do
    begin
      c := cols[j];
      w := w - (v * c) * c;
    end;

    v := w;

    // Step 2: reorthogonalize
    for j := 0 to i - 1 do
    begin
      c := cols[j];
      w := w - (v * c) * c;
    end;

    // Step 3: normalize
    w.NormalizeIfNonzero;

    cols[i] := w;

  end;

  Result := TComplexMatrix.CreateFromColumns(cols);

end;

function TComplexMatrix.ColumnSpaceBasis: TComplexMatrix;
var
  A: TComplexMatrix;
  pivots: array of Integer;
  i: Integer;
begin
  A := Self.RowEchelonForm;
  SetLength(pivots, Size.Rows);
  for i := 0 to High(pivots) do
    pivots[i] := A.PivotPos(i);
  Result := _EmptyComplexMatrix;
  for i := 0 to High(pivots) do
    if pivots[i] <> -1 then
      Result := Result.Augment(Cols[pivots[i]])
end;

function TComplexMatrix.ColumnSpaceProjection(
  const AVector: TComplexVector): TComplexVector;
begin
  raise ENotImplemented.Create('Not implemented for complex matrices.');
end;

function TComplexMatrix.DistanceFromColumnSpace(const AVector: TComplexVector): TASR;
begin
  raise ENotImplemented.Create('Not implemented for complex matrices.');
end;

function TComplexMatrix.SimilarHessenberg(A2x2Bulge: Boolean = False): TComplexMatrix;
var
  k: Integer;
  col: TComplexVector;
  tau: TASC;
  gamma: TASC;
  uk: TComplexVector;
  Ident, Q: TComplexMatrix;
begin

  if not IsSquare then
    raise EMathException.Create('Cannot find similar Hessenberg matrix of non-square matrix.');

  Ident := ComplexIdentityMatrix(Size.Rows);
  Result := Clone;
  for k := 0 to Size.Rows - 2 - 1 do
  begin

    col.Dimension := Size.Rows - k - 1;
    MatMoveColToVect(Result, k, k + 1, Size.Rows - 1, col);
    GetHouseholderMap(col, tau, gamma, uk);
    if CIsZero(gamma) then
      Q := Ident
    else
      Q := DirectSum(ComplexIdentityMatrix(k + 1), ComplexIdentityMatrix(col.Dimension) - TComplexMatrix.Create(gamma * uk, uk));

    Result := Q * Result * Q;

    DoYield;

  end;

end;

function TComplexMatrix.UnsortedEigenvalues: TComplexVector;
var
  A, Q: TComplexMatrix;
  FirstCol, u: TComplexVector;
  tau, gamma: TASC;
  n, e: Integer;
  i: Integer;
  c: Integer;
begin

  if not IsSquare then
    raise EMathException.Create('Cannot compute eigenvalues of non-square matrix.');

  if IsEmpty then
    Exit(TComplexVector.Create([]));

  if Size = Mat1x1 then
    Exit(TComplexVector.Create([Self[0, 0]]));

  if Size = Mat2x2 then
    Exit(Eigenvalues2x2);

  n := Size.Rows;
  e := n - 1;

  if n > 500 then
    raise Exception.Create('Matrix too big.');

  A := SimilarHessenberg(False);

  c := 0;
  while True do
  begin

    for i := 0 to e - 1 do
      if CIsZero(A[i + 1, i]) then
        Exit(VectConcat(
          A.LeadingPrincipalSubmatrix(i + 1).UnsortedEigenvalues,
          A.Submatrix(CreateIntSequence(i + 1, e)).UnsortedEigenvalues
          ));

    FirstCol := ComplexZeroVector(Self.Size.Rows);
    FirstCol[0] := ((A[0, 0] - A[e-1, e-1]) * (A[0, 0] - A[e, e]) - A[e, e-1] * A[e-1, e]) / A[1, 0] + A[0, 1];
    FirstCol[1] := A[0, 0] + A[1, 1] - A[e-1, e-1] - A[e, e];
    FirstCol[2] := A[2, 1];

    GetHouseholderMap(FirstCol, tau, gamma, u);
    if CIsZero(gamma) then
      Q := ComplexIdentityMatrix(n)
    else
      Q := ComplexIdentityMatrix(n) - TComplexMatrix.Create(gamma * u, u);

    A := (Q * A * Q).SimilarHessenberg(True);

    Inc(c);
    if c > 100 then
      Break;

    DoYield;

  end;

  raise EMathException.Create('Couldn''t compute eigenvalues.');

end;

function TComplexMatrix.spectrum: TComplexVector;
begin
  Result := eigenvalues;
end;

function TComplexMatrix.eigenvectors(out AEigenvalues: TComplexVector;
  out AEigenvectors: TComplexMatrix; ASkipVerify: Boolean = False): Boolean;
const
  LIMIT = 10000;
var
  A, Q, R: TComplexMatrix;
  i, j, k: Integer;
  lambda, expf: TASC;
  E: TArray<TComplexVector>;
  EigenspaceFirstIndex,
  EigenspaceLastIndex: Integer;
begin

  if IsDiagonal then
  begin
    AEigenvalues := MainDiagonal;
    AEigenvectors := ComplexIdentityMatrix(Size.Rows);
    Exit(True);
  end;

  Result := False;

  if IsHermitian then
  begin
    A := Self;
    AEigenvectors := ComplexIdentityMatrix(Size.Rows);
    i := 0;
    repeat
      A.QR(Q, R);
      A := R * Q;
      AEigenvectors := AEigenvectors * Q;
      Inc(i);
      DoYield;
    until A.IsUpperTriangular or (i = LIMIT);
    AEigenvalues := A.MainDiagonal.Defuzz;
    Result := (i < LIMIT) or A.IsUpperTriangular(1E-6);
  end;

  if not Result then
  begin
    try
      AEigenvalues := eigenvalues;
      SetLength(E, AEigenvalues.Dimension);
      for i := 0 to High(E) do
        E[i] := EigenvectorOf(AEigenvalues[i]);
      AEigenvectors := TComplexMatrix.CreateFromColumns(E);
      Result := True;
    except
      Result := False;
    end;
  end;

  if Result then
  begin

    if IsHermitian then
    begin
      lambda := 0; // for compiler
      EigenspaceFirstIndex := 0;
      for i := 0 to AEigenvalues.Dimension{sic!} do
      begin
        if (i = AEigenvalues.Dimension) or (i > 0) and not CSameValue(AEigenvalues[i], lambda) then
        begin
          EigenspaceLastIndex := Pred(i);
          if EigenspaceLastIndex > EigenspaceFirstIndex then
            AEigenvectors.InplaceGramSchmidt(EigenspaceFirstIndex, EigenspaceLastIndex);
          EigenspaceFirstIndex := i;
        end;
        if i < AEigenvalues.Dimension then
          lambda := AEigenvalues[i];
      end;
    end;

    for i := 0 to AEigenvectors.Size.Cols - 1 do
    begin
      for j := 0 to AEigenvectors.Size.Rows - 1 do
        if (AEigenvectors[j, i].Re > 0) and (AEigenvectors[j, i].Im = 0) then
          Break
        else if AEigenvectors[j, i] <> 0 then
        begin
          expf := cexp(-AEigenvectors[j, i].Argument * ImaginaryUnit);
          for k := 0 to AEigenvectors.Size.Rows - 1 do
            AEigenvectors[k, i] := AEigenvectors[k, i] * expf;
          Break;
        end;
    end;
  end;

  if Result and not ASkipVerify then
  begin

    if AEigenvectors.IsSingular then
      Exit(False);

    for i := 0 to Size.Cols - 1 do
      if not IsEigenpair(AEigenvalues[i], AEigenvectors.Cols[i], 1E-6) then
        Exit(False);

  end;

end;

function TComplexMatrix.IsEigenvector(const u: TComplexVector; const Epsilon: Extended = 0): Boolean;
var
  im: TComplexVector;
begin
  if not IsSquare then
    raise EMathException.Create('Non-square matrix cannot have eigenvectors.');
  if u.Dimension <> Size.Cols then
    raise EMathException.Create('Vector is of wrong dimension.');
  if u.IsZeroVector(Epsilon) then Exit(False);
  im := TComplexVector((Self * u).Data);
  Result := AreParallel(u, im, Epsilon);
end;

function TComplexMatrix.EigenvalueOf(const u: TComplexVector; const Epsilon: Extended = 0): TASC;
begin
  if not TryEigenvalueOf(u, Result, Epsilon) then
    raise EMathException.Create('A vector which isn''t an eigenvector has no associated eigenvalue.');
end;

function TComplexMatrix.TryEigenvalueOf(const u: TComplexVector; out AEigenvalue: TASC;
  const Epsilon: Extended = 0): Boolean;
var
  i: Integer;
  im: TComplexVector;
begin

  if not IsEigenvector(u, Epsilon) then
    Exit(False);

  Result := True;
  im := TComplexVector((Self * u).Data);

  if im.IsZeroVector(Epsilon) then
  begin
    AEigenvalue := 0;
    Exit;
  end;

  for i := 0 to u.Dimension - 1 do
    if not CIsZero(u[i], Epsilon) and not CIsZero(im[i], Epsilon) then
    begin
      AEigenvalue := im[i] / u[i];
      Exit;
    end;

  raise EMathException.Create('Couldn''t compute associated eigenvalue of given eigenvector.');

end;

function TComplexMatrix.IsEigenpair(const lambda: TASC; const u: TComplexVector;
  const Epsilon: Extended): Boolean;
begin
  if not IsSquare then
    raise EMathException.Create('Non-square matrix cannot have eigenvectors.');
  if u.Dimension <> Size.Cols then
    raise EMathException.Create('Vector is of wrong dimension.');
  Result := SameVectorEx(TComplexVector((Self * u).Data), lambda * u, Epsilon) and not u.IsZeroVector(Epsilon);
end;

function TComplexMatrix.EigenvectorOf(const lambda: TASC): TComplexVector;
var
  pertlambda: TASC;
  A: TComplexMatrix;
  i: Integer;
  j: Integer;
  Done: Boolean;
  u: TComplexVector;
begin

  if not IsSquare then
    raise EMathException.Create('EigenvectorOf: The matrix isn''t square.');

  // Inverting a singular matrix!

  pertlambda := lambda;
  i := 0;
  while not (Self - pertlambda * ComplexIdentityMatrix(Size.Rows)).TryInvert(A) do
  begin
    if i = 100 then
      raise EMathException.Create('EigenvectorOf: Couldn''t invert matrix for inverse iteration.');
    Inc(i);
    pertlambda := lambda + 10*i * lambda.Modulus * ExtendedResolution * (2*Random - 1);
  end;


  for i := 1 to 10 do
  begin

    Done := False;

    if ImaginaryPart.IsZeroMatrix then
    begin

      Result := TComplexVector(RandomVector(Size.Rows));

      j := 0;
      repeat
        Result := TComplexVector(A * Result).Normalized;
        Done := IsEigenpair(lambda, Result);
        Inc(j)
      until Done or (j > 10);

    end;

    if not Done then
    begin

      Result := TComplexVector(RandomVector(Size.Rows)) + ImaginaryUnit * TComplexVector(RandomVector(Size.Rows));

      j := 0;
      repeat
        Result := TComplexVector(A * Result).Normalized;
        Done := IsEigenpair(lambda, Result);
        Inc(j)
      until Done or (j > 10);

    end;

    if Done then
    begin
      // Defuzz
      u := TComplexVector(A * TComplexVector(Result)).Normalized;
      u := TComplexVector(A * TComplexVector(u)).Normalized;
      u := TComplexVector(A * TComplexVector(u)).Normalized;
      for j := 0 to Result.Dimension - 1 do
        if u[j].Modulus < 1E-50 then
          u[j] := 0;

      if IsEigenpair(lambda, u) then
        Result := u;

      for j := 0 to Result.Dimension - 1 do
        if (Result[j].Re > 0) and (Result[j].Im = 0) then
          Break
        else if Result[j] <> 0 then
        begin
          Result := Result * cexp(-Result[j].Argument * ImaginaryUnit);
          Break;
        end;

      Exit;
    end;

  end;

  raise EMathException.Create('EigenvectorOf: Couldn''t compute associated eigenvector.');

end;

function TComplexMatrix.SpectralRadius: TASR;
begin
  Result := max(spectrum.Abs());
end;

function TComplexMatrix.SingularValues: TRealVector;
begin
  Result := HermitianSquare
    .eigenvalues
    .RealPart
    .ReverseSort
    .TruncateAt(Size.SmallestDimension)
    .Apply(sqrt);
end;

function TComplexMatrix.Abs: TRealMatrix;
var
  i: Integer;
begin
  Result := TRealMatrix.CreateUninitialized(Size);
  for i := 0 to Size.ElementCount - 1 do
    Result.Data[i] := FElements[i].Modulus;
end;

function TComplexMatrix.Defuzz(const Eps: Double): TComplexMatrix;
begin
  Result := Self;
  TComplexVector(FElements).Defuzz(Eps);
end;

function TComplexMatrix.Clone: TComplexMatrix; // empty matrix aware, child safe
begin
  Result := TComplexMatrix.CreateUninitialized(Size);
  if Length(FElements) > 0 then
    Move(FElements[0], Result.FElements[0], Length(FElements) * SizeOf(TASC));
end;

function TComplexMatrix.Vectorization: TComplexVector;
begin
  Result := TComplexVector(Transpose.Data); // move semantics!
end;

function TComplexMatrix.AsVector: TComplexVector;
begin
  Result := TComplexVector.Create(Data); // copy semantics!
end;

function TComplexMatrix.Augment(const A: TComplexMatrix): TComplexMatrix; // empty matrix aware, child safe
var
  y: Integer;
  x: Integer;
begin

  if IsEmpty then
    Exit(A.Clone);

  if Size.Rows <> A.Size.Rows then
    raise EMathException.Create('Cannot augment matrix with different number of rows.');

  Result := TComplexMatrix.CreateUninitialized(TMatrixSize.Create(Size.Rows, Size.Cols + A.Size.Cols));

  for y := 0 to Size.Rows - 1 do
    for x := 0 to Size.Cols - 1 do
      Result.Elements[y, x] := Self[y, x];

  for y := 0 to Size.Rows - 1 do
    for x := 0 to A.Size.Cols - 1 do
      Result.Elements[y, Size.Cols + x] := A[y, x];

end;

function TComplexMatrix.Augment: TComplexMatrix;
begin
  Result := Augment(ComplexZeroVector(Size.Rows));
end;

function TComplexMatrix.GetRow(ARow: Integer): TComplexVector;
begin
  if not InRange(ARow, 0, Size.Rows - 1) then
    raise EMathException.Create('The specified row does not exist.');
  Result.Dimension := Size.Cols;
  Move(FElements[ARow * Result.Dimension], Result.Data[0], Result.Dimension * SizeOf(TASC));
end;

function TComplexMatrix.GetCol(ACol: Integer): TComplexVector;
var
  i: Integer;
begin
  if not InRange(ACol, 0, Size.Cols - 1) then
    raise EMathException.Create('The specified column does not exist.');
  Result.Dimension := Size.Rows;
  for i := 0 to Result.Dimension - 1 do
    Result[i] := Self[i, ACol];
end;

procedure TComplexMatrix._DoSetRow(ARowIndex: Integer; const ARow: TComplexVector);
var
  i: Integer;
  j: Integer;
begin

  if Length(ARow.Data) <> Size.Cols then
    raise EMathException.Create('Incorrect length of array.');

  if not InRange(ARowIndex, 0, Size.Rows - 1) then
    raise EMathException.Create('The specified row does not exist.');

  j := Length(ARow.Data) * ARowIndex;
  for i := 0 to Length(ARow.Data) - 1 do
    FElements[j + i] := ARow[i];

end;

procedure TComplexMatrix.SetRow(ARowIndex: Integer; const ARow: array of TASC);
var
  dummy: TASCArray;
begin
  SetLength(dummy, Length(ARow));
  if Length(ARow) > 0 then
    Move(ARow[0], dummy[0], Length(ARow) * SizeOf(TASC));
  _DoSetRow(ARowIndex, TComplexVector(dummy));
end;

procedure TComplexMatrix._DoSetCol(AColIndex: Integer; const ACol: TComplexVector);
var
  i: Integer;
begin
  if Length(ACol.Data) <> Size.Rows then
    raise EMathException.Create('TComplexMatrix.SetCol: Incorrect length of array.');
  if not InRange(AColIndex, 0, Size.Cols - 1) then
    raise EMathException.Create('TComplexMatrix.SetCol: The specified column does not exist.');

  for i := 0 to Length(ACol.Data) - 1 do
    Self[i, AColIndex] := ACol[i];
end;

function TComplexMatrix.GetFirstCol: TComplexVector;
begin
  Result := Cols[0];
end;

procedure TComplexMatrix.SetFirstCol(const ACol: TComplexVector);
begin
  Cols[0] := ACol;
end;

function TComplexMatrix.GetLastCol: TComplexVector;
begin
  Result := Cols[Size.Cols - 1];
end;

procedure TComplexMatrix.SetLastCol(const ACol: TComplexVector);
begin
  Cols[Size.Cols - 1] := ACol;
end;

procedure TComplexMatrix.SetCol(AColIndex: Integer; const ACol: array of TASC);
var
  dummy: TASCArray;
begin
  SetLength(dummy, Length(ACol));
  if Length(ACol) > 0 then
    Move(ACol[0], dummy[0], Length(ACol) * SizeOf(TASC));
  _DoSetCol(AColIndex, TComplexVector(dummy));
end;

function TComplexMatrix.GetMainDiagonal: TComplexVector;
var
  i: Integer;
  q: Integer;
begin
  q := Size.SmallestDimension;
  Result.Dimension := q;
  for i := 0 to q - 1 do
    Result[i] := Self[i, i];
end;

procedure TComplexMatrix.SetMainDiagonal(const ADiagonal: TComplexVector);
var
  i: Integer;
  q: Integer;
begin
  q := Size.SmallestDimension;
  if ADiagonal.Dimension <> q then
    raise EMathException.Create('Incorrect number of elements in diagonal.');
  for i := 0 to q - 1 do
    Self[i, i] := ADiagonal[i];
end;

function TComplexMatrix.GetSuperDiagonal: TComplexVector;
var
  i: Integer;
  q: Integer;
begin
  if Size.Cols > Size.Rows then
    q := Size.Rows
  else
    q := Size.Cols - 1;
  Result.Dimension := q;
  for i := 0 to Result.Dimension - 1 do
    Result[i] := Self[i, i + 1];
end;

procedure TComplexMatrix.SetSuperDiagonal(const ADiagonal: TComplexVector);
var
  i: Integer;
  q: Integer;
begin
  if Size.Cols > Size.Rows then
    q := Size.Rows
  else
    q := Size.Cols - 1;
  if ADiagonal.Dimension <> q then
    raise EMathException.Create('Incorrect number of elements in superdiagonal.');
  for i := 0 to ADiagonal.Dimension - 1 do
    Self[i, i + 1] := ADiagonal[i];
end;

function TComplexMatrix.GetSubDiagonal: TComplexVector;
var
  i: Integer;
  q: Integer;
begin
  if Size.Rows > Size.Cols then
    q := Size.Cols
  else
    q := Size.Rows - 1;
  Result.Dimension := q;
  for i := 0 to Result.Dimension - 1 do
    Result[i] := Self[i + 1, i];
end;

procedure TComplexMatrix.SetSubDiagonal(const ADiagonal: TComplexVector);
var
  i: Integer;
  q: Integer;
begin
  if Size.Rows > Size.Cols then
    q := Size.Cols
  else
    q := Size.Rows - 1;
  if ADiagonal.Dimension <> q then
    raise EMathException.Create('Incorrect number of elements in subdiagonal.');
  for i := 0 to ADiagonal.Dimension - 1 do
    Self[i + 1, i] := ADiagonal[i];
end;

procedure TComplexMatrix.SetSize(const Value: TMatrixSize);
begin
  FElements := nil; // clear dyn array data
  Alloc(Value);     // new elements will be 0
end;

function TComplexMatrix.GetAntiDiagonal: TComplexVector;
var
  i: Integer;
begin
  if not IsSquare then
    raise EMathException.Create('A non-square matrix has no antidiagonal.');
  Result.Dimension := Size.Rows;
  for i := 0 to Size.Rows - 1 do
    Result[i] := Self[i, Size.Cols - 1 - i];
end;

procedure TComplexMatrix.SetAntiDiagonal(const ADiagonal: TComplexVector);
var
  i: Integer;
begin
  if not IsSquare then
    raise EMathException.Create('A non-square matrix has no antidiagonal.');
  if ADiagonal.Dimension <> Size.Rows then
    raise EMathException.Create('Incorrect number of elements in antidiagonal.');
  for i := 0 to Size.Rows - 1 do
    Self[i, Size.Cols - 1 - i] := ADiagonal[i];
end;

function TComplexMatrix.Submatrix(ARowToRemove: Integer; AColToRemove: Integer;
  AAllowEmpty: Boolean): TComplexMatrix; // empty matrix aware, not child safe
var
  y: Integer;
  x: Integer;
  resy, resx: Integer;
begin

  if not (InRange(ARowToRemove, 0, Size.Rows - 1) and InRange(AColToRemove, 0, Size.Cols - 1)) then
    raise EMathException.Create('Invalid row or column index in call to function Submatrix.');

  if AAllowEmpty and (IsRow or IsColumn) then
    Exit(_EmptyComplexMatrix);

  Result := TComplexMatrix.CreateUninitialized(TMatrixSize.Create(Size.Rows - 1, Size.Cols - 1));

  resy := 0;
  for y := 0 to Size.Rows - 1 do
  begin
    if y = ARowToRemove then
      Continue;
    resx := 0;
    for x := 0 to Size.Cols - 1 do
    begin
      if x = AColToRemove then
        Continue;
      Result.Elements[resy, resx] := Self[y, x];
      Inc(resx);
    end;
    Inc(resy);
  end;

end;

function TComplexMatrix.Submatrix(const ARows: array of Integer;
  const ACols: array of Integer): TComplexMatrix;

  procedure InvalidArg;
  begin
    raise EMathException.Create('Invalid index arrays passed to function Submatrix.');
  end;

var
  i: Integer;
  y, x: Integer;
begin
  for i := 0 to High(ARows) do
    if not InRange(ARows[i], 0, Size.Rows - 1) then
      InvalidArg;
  for i := 0 to High(ACols) do
    if not InRange(ACols[i], 0, Size.Cols - 1) then
      InvalidArg;
  Result := TComplexMatrix.CreateUninitialized(TMatrixSize.Create(Length(ARows), Length(ACols)));
  for y := 0 to Result.Size.Rows - 1 do
    for x := 0 to Result.Size.Cols - 1 do
      Result[y, x] := Self[ARows[y], ACols[x]];
end;

function TComplexMatrix.Submatrix(const ARows: array of Integer): TComplexMatrix;
begin
  Result := Submatrix(ARows, ARows);
end;

function TComplexMatrix.LeadingPrincipalSubmatrix(const ASize: Integer): TComplexMatrix;
begin
  Result := Submatrix(CreateIntSequence(0, ASize - 1));
end;

function TComplexMatrix.Lessened: TComplexMatrix;
var
  y: Integer;
  x: Integer;
begin
  if Size.Cols = 1 then
    raise EMathException.Create('Cannot lessen a single-column matrix.');
  Result := TComplexMatrix.CreateUninitialized(Size.LessenedSize);
  for y := 0 to Result.Size.Rows - 1 do
    for x := 0 to Result.Size.Cols - 1 do
      Result[y, x] := Self[y, x];
end;

function TComplexMatrix.Minor(ARow: Integer; ACol: Integer): TASC;
begin
  Result := Submatrix(ARow, ACol).Determinant;
end;

function TComplexMatrix.Cofactor(ARow: Integer; ACol: Integer): TASC;
begin
  Result := AltSgn(ARow + ACol) * Minor(ARow, ACol);
end;

function TComplexMatrix.CofactorMatrix: TComplexMatrix;
var
  y: Integer;
  x: Integer;
begin
  if not IsSquare then
    raise EMathException.Create('Cannot compute cofactor matrix of non-square matrix.');
  Result := TComplexMatrix.CreateUninitialized(Size);
  for y := 0 to Size.Rows - 1 do
    for x := 0 to Size.Cols - 1 do
    begin
      Result[y, x] := Cofactor(y, x);
      DoYield;
    end;
end;

function TComplexMatrix.AdjugateMatrix: TComplexMatrix;
begin
  Result := CofactorMatrix.Transpose;
end;

procedure TComplexMatrix.LU(out P, L, U: TComplexMatrix);

  function RowPermutationMatrix(n, i, j: Integer): TComplexMatrix;
  begin
    Result := ComplexIdentityMatrix(n);
    Result[i, i] := 0;
    Result[j, j] := 0;
    Result[i, j] := 1;
    Result[j, i] := 1;
  end;

var
  A: TComplexMatrix;
  Pvect: TIndexArray;
  i: Integer;
begin

  DoQuickLU(A, Pvect);

  L := A.Clone;
  L.MakeLowerTriangular;
  L.MainDiagonal := TComplexVector.Create(L.Size.Rows, 1);

  U := A.Clone;
  U.MakeUpperTriangular;

  P := ComplexIdentityMatrix(Size.Rows);
  for i := 0 to High(Pvect) do
    if Pvect[i] <> -1 then
      P := RowPermutationMatrix(Size.Rows, i, Pvect[i]) * P;

end;

function TComplexMatrix.Cholesky(out R: TComplexMatrix): Boolean;
var
  i, j, k: Integer;
begin

  if not IsSquare then
    raise EMathException.Create('Cannot compute Cholesky decomposition of non-square matrix.');

  R := Clone;

  for i := 0 to Size.Rows - 1 do
  begin
    for k := 0 to i - 1 do
      R[i, i] := R[i, i]  - R[k, i].ModSqr;
    if (R[i, i].Re < 0) or IsZero(R[i, i].Re) or not R[i, i].IsReal then
      Exit(False);
    R[i, i] := sqrt(R[i, i].Re);
    for j := i + 1 to Size.Rows - 1 do
    begin
      for k := 0 to i - 1 do
        R[i, j] := R[i, j] - R[k, i].Conjugate * R[k, j];
      R[i, j] := R[i, j] / R[i, i];
    end;
    DoYield;
  end;

  R.MakeUpperTriangular;
  Result := True;

end;

procedure TComplexMatrix.GetHouseholderMap(const AVect: TComplexVector;
  out tau, gamma: TASC; out u: TComplexVector);
var
  beta: TASC;
begin
  beta := max(AVect.Abs());
  if CIsZero(beta) then
  begin
    tau := 0;
    gamma := 0;
    u := ComplexZeroVector(AVect.Dimension);
  end
  else
  begin
    u := AVect / beta;
    tau := u.Norm * cexp(ImaginaryUnit * u[0].Argument);
    u[0] := u[0] + tau;
    gamma := u[0] / tau;
    u := u / u[0];
    u[0] := 1;
    tau := tau * beta;
  end;
end;

procedure TComplexMatrix.QR(out Q: TComplexMatrix; out R: TComplexMatrix);
var
  k: Integer;
  col: TComplexVector;
  tau: TASC;
  gamma: TASC;
  u: TComplexVector;
  Qk: TComplexMatrix;
begin

  if Size.Cols > Size.Rows then
    raise EMathException.Create('QR decomposition only implemented for square and tall matrices.');

  R := Clone;
  Q := ComplexIdentityMatrix(R.Size.Rows);
  for k := 0 to Min(Size.Rows - 2, Size.Cols - 1) do
  begin

    col.Dimension := Size.Rows - k;
    MatMoveColToVect(R, k, k, Size.Rows - 1, col);
    GetHouseholderMap(col, tau, gamma, u);
    if CIsZero(gamma) then
      Qk := ComplexIdentityMatrix(col.Dimension)
    else
      Qk := ComplexIdentityMatrix(col.Dimension) - TComplexMatrix.Create(gamma * u, u);

    MatMulBlockInplaceL(R,
      Rect(
        k,
        k,
        Min(k + Qk.Size.Cols, R.Size.Cols) - 1,
        Min(k + Qk.Size.Rows, R.Size.Rows) - 1
      ),
      Qk);

    R[k, k] := -tau;

    MatMulBottomRight(Q, Qk);

    DoYield;

  end;

  R.MakeUpperTriangular;

end;

procedure TComplexMatrix.Hessenberg(out A, U: TComplexMatrix);
var
  k: Integer;
  col: TComplexVector;
  tau: TASC;
  gamma: TASC;
  uk: TComplexVector;
  Ident, Q: TComplexMatrix;
begin

  if not IsSquare then
    raise EMathException.Create('Cannot find similar Hessenberg matrix of non-square matrix.');

  Ident := ComplexIdentityMatrix(Size.Rows);
  A := Clone;
  U := ComplexIdentityMatrix(Size.Rows);
  for k := 0 to Size.Rows - 2 - 1 do
  begin

    col.Dimension := Size.Rows - k - 1;
    MatMoveColToVect(A, k, k + 1, Size.Rows - 1, col);
    GetHouseholderMap(col, tau, gamma, uk);

    if CIsZero(gamma) then
      Q := Ident
    else
      Q := DirectSum(ComplexIdentityMatrix(k + 1), ComplexIdentityMatrix(col.Dimension) - TComplexMatrix.Create(gamma * uk, uk));

    A := Q * A * Q;
    U := U * Q;

  end;

end;

function TComplexMatrix.Apply(AFunction: TComplexFunctionRef): TComplexMatrix;
var
  i: Integer;
begin
  Result := TComplexMatrix.CreateUninitialized(Size);
  for i := 0 to Result.Size.ElementCount - 1 do
    Result.Data[i] := AFunction(FElements[i]);
end;

function TComplexMatrix.Replace(APredicate: TPredicate<TASC>; const ANewValue: TASC): TComplexMatrix;
begin
  Result := TComplexMatrix.CreateUninitialized(Size);
  Result.Data := TASCArray(TComplexVector(Data).Replace(APredicate, ANewValue));
end;

function TComplexMatrix.Replace(const AOldValue, ANewValue: TASC; const Epsilon: Extended): TComplexMatrix;
begin
  Result := TComplexMatrix.CreateUninitialized(Size);
  Result.Data := TASCArray(TComplexVector(Self.Data).Replace(AOldValue, ANewValue, Epsilon));
end;

function TComplexMatrix.Replace(const ANewValue: TASC): TComplexMatrix;
begin
  Result := TComplexMatrix.Create(Size, ANewValue);
end;

procedure TComplexMatrix.RequireNonEmpty;
begin
  if IsEmpty then
    raise Exception.Create('Matrix is empty.');
end;

function TComplexMatrix.str(const AOptions: TFormatOptions): string;
var
  y: Integer;
  x: Integer;
begin
  Result := '(';
  for y := 0 to Size.Rows - 1 do
  begin
    Result := Result + '(';
    for x := 0 to Size.Cols - 1 do
    begin
      Result := Result + ComplexToStr(Elements[y, x], False, AOptions);
      if x < Size.Cols - 1 then
        Result := Result + ', '
    end;
    Result := Result + ')';
    if y < Size.Rows - 1 then
      Result := Result + ', '
  end;
  Result := Result + ')';
end;

procedure TComplexMatrix.AddRow(const ARow: array of TASC);
var
  i, j: Integer;
begin
  if Length(ARow) <> Size.Cols then
    raise EMathException.Create('Cannot add row to matrix since the number of columns doesn''t match.');
  Alloc(Size.Rows + 1, Size.Cols);
  j := Size.Cols * (Size.Rows - 1);
  for i := 0 to Length(ARow) - 1 do
  begin
    FElements[j] := ARow[i];
    Inc(j);
  end;
end;

function TComplexMatrix.Sort(AComparer: IComparer<TASC>): TComplexMatrix;
begin
  TComplexVector(FElements).Sort(AComparer);
  Result := Self;
end;

function TComplexMatrix.eigenvalues: TComplexVector;
begin
  Result := UnsortedEigenvalues.Sort(TASCComparer.ModulusArgumentDescending);
end;

function TComplexMatrix.Shuffle: TComplexMatrix;
begin
  TComplexVector(FElements).Shuffle;
  Result := Self;
end;

function TComplexMatrix.Reverse: TComplexMatrix;
begin
  Result := Self;
  TComplexVector(FElements).Reverse;
end;

function mpow(const A: TComplexMatrix; const N: Integer): TComplexMatrix;
var
  i: Integer;
begin
  if not A.IsSquare then
    raise EMathException.Create('Cannot compute power of non-square matrix.');

  if N < 0 then
    Exit(mpow(A.Inverse, -N));

  Result := ComplexIdentityMatrix(A.Size.Rows);
  for i := 1 to N do
    Result := Result * A;
end;

function msqrt(const A: TComplexMatrix): TComplexMatrix;
var
  T: TComplexMatrix;
  u: TComplexVector;
begin
  if not A.IsPositiveSemiDefinite then
    raise EMathException.Create('Matrix square root only defined for positive semidefinite Hermitian matrices.');

  if not A.eigenvectors(u, T, true) then
    raise EMathException.Create('msqrt: Couldn''t diagonalize the matrix.');

  T := T.GramSchmidt;

  Result := T * diag(u.RealPart.Apply(sqrt)) * T.Adjoint;

  if not SameMatrixEx(Result.Sqr, A, 1E-8) then
    raise EMathException.Create('Couldn''t compute matrix square root.');
end;

function SameMatrix(const A, B: TComplexMatrix; const Epsilon: Extended): Boolean;
begin
  Result := (A.Size = B.Size) and SameVector(TComplexVector(A.Data), TComplexVector(B.Data), Epsilon);
end;

function SameMatrixEx(const A, B: TComplexMatrix; const Epsilon: Extended): Boolean;
begin
  Result := (A.Size = B.Size) and SameVectorEx(TComplexVector(A.Data), TComplexVector(B.Data), Epsilon);
end;

function ComplexZeroMatrix(const ASize: TMatrixSize): TComplexMatrix; inline;
begin
  Result := TComplexMatrix.Create(ASize, 0);
end;

function ComplexIdentityMatrix(ASize: Integer): TComplexMatrix; // empty matrix aware, not child safe
begin
  if ASize = 0 then Exit(_EmptyComplexMatrix);
  Result := TComplexMatrix.CreateDiagonal(ASize, 1);
end;

function ComplexReversalMatrix(ASize: Integer): TComplexMatrix;
begin
  Result := TComplexMatrix.Create(TMatrixSize.Create(ASize), 0);
  Result.AntiDiagonal := TComplexVector.Create(ASize, 1);
end;

function diag(const AElements: array of TASC): TComplexMatrix;
begin
  Result := TComplexMatrix.CreateDiagonal(AElements);
end;

function diag(const AElements: TComplexVector): TComplexMatrix;
begin
  Result := TComplexMatrix.CreateDiagonal(AElements);
end;

function OuterProduct(const u, v: TComplexVector): TComplexMatrix; inline;
begin
  Result := TComplexMatrix.Create(u, v);
end;

function CirculantMatrix(const AElements: array of TASC): TComplexMatrix;
var
  y: Integer;
  x: Integer;
  row: PASC;
begin
  Result := TComplexMatrix.CreateUninitialized(Length(AElements));
  for y := 0 to Result.Size.Rows - 1 do
  begin
    row := Result.RowData[y];
    for x := 0 to Result.Size.Cols - 1 do
      row[x] := AElements[(Length(AElements) + x - y) mod Result.Size.Cols];
  end;
end;

function ToeplitzMatrix(const AFirstRow, AFirstCol: array of TASC): TComplexMatrix;

  function virtarr(index: Integer): TASC;
  begin
    if index <= 0 then
      Result := AFirstRow[-index]
    else
      Result := AFirstCol[index];
  end;

var
  y: Integer;
  x: Integer;

begin

  if (Length(AFirstRow) = 0) or (Length(AFirstCol) = 0) then
    raise EMathException.Create('The given vectors must be of dimension one or greater.');

  if not CSameValueEx(AFirstRow[0], AFirstCol[0]) then
    raise EMathException.Create('The first element of the first row must equal the first element of the first column.');

  Result := TComplexMatrix.CreateUninitialized(TMatrixSize.Create(Length(AFirstCol), Length(AFirstRow)));

  for y := 0 to Result.Size.Rows - 1 do
    for x := 0 to Result.Size.Cols - 1 do
      Result[y, x] := virtarr(y - x);

end;

function HankelMatrix(const AFirstRow, ALastCol: array of TASC): TComplexMatrix;

  function virtarr(index: Integer): TASC;
  begin
    if index >= Length(AFirstRow) then
      Result := ALastCol[index - Length(AFirstRow) + 1]
    else
      Result := AFirstRow[index];
  end;

var
  y: Integer;
  x: Integer;

begin

  if (Length(AFirstRow) = 0) or (Length(ALastCol) = 0) then
    raise EMathException.Create('The specified vectors must be of dimension one or greater.');

  if not CSameValueEx(AFirstRow[High(AFirstRow)], ALastCol[0]) then
    raise EMathException.Create('The last element of the first row must equal the first element of the last column.');

  Result := TComplexMatrix.CreateUninitialized(TMatrixSize.Create(Length(ALastCol), Length(AFirstRow)));

  for y := 0 to Result.Size.Rows - 1 do
    for x := 0 to Result.Size.Cols - 1 do
      Result[y, x] := virtarr(y + x);

end;

function VandermondeMatrix(const AElements: array of TASC; ACols: Integer): TComplexMatrix;
var
  y: Integer;
  x: Integer;
  row: PASC;
begin
  if ACols <= 0 then
    ACols := Length(AElements);
  Result := TComplexMatrix.CreateUninitialized(TMatrixSize.Create(Length(AElements), ACols));
  for y := 0 to Result.Size.Rows - 1 do
  begin
    row := Result.RowData[y];
    if ACols >= 1 then
      row[0] := 1;
    if ACols >= 2 then
      row[1] := AElements[y];
    for x := 2 to Result.Size.Cols - 1 do
      row[x] := cpow(AElements[y], x);
  end;
end;

function ReflectionMatrix(const u: TComplexVector): TComplexMatrix;
begin
  if u.IsZeroVector then
    raise EMathException.Create('Vector cannot be zero.');
  Result := ComplexIdentityMatrix(u.Dimension) - 2 * OuterProduct(u, u) / u.NormSqr;
end;

function QuickReflectionMatrix(const u: TComplexVector): TComplexMatrix;
begin
  Result := ComplexIdentityMatrix(u.Dimension) - 2 * OuterProduct(u, u);
end;

function HadamardProduct(const A, B: TComplexMatrix): TComplexMatrix;
var
  i: Integer;
begin
  if A.Size <> B.Size then
    raise EMathException.Create('Hadamard product only defined for matrices of the same size.');
  Result := TComplexMatrix.CreateUninitialized(A.Size);
  for i := 0 to Result.Size.ElementCount - 1 do
    Result.Data[i] := A.Data[i] * B.Data[i];
end;

function DirectSum(const A, B: TComplexMatrix): TComplexMatrix; // empty matrix aware, child safe
begin
  Result := DirectSum([A, B]);
end;

function DirectSum(const Blocks: array of TComplexMatrix): TComplexMatrix; overload;
var
  i: Integer;
  cols, rows: Integer;
  x, y: Integer;
begin
  cols := 0;
  rows := 0;
  for i := 0 to High(Blocks) do
  begin
    Inc(cols, Blocks[i].Size.Cols);
    Inc(rows, Blocks[i].Size.Rows);
  end;

  Result := TComplexMatrix.CreateUninitialized(TMatrixSize.Create(rows, cols));

  x := 0;
  y := 0;
  for i := 0 to High(Blocks) do
  begin
    MatMove(Blocks[i], Result, Point(x, y));
    MatBlockFill(Result,
      Rect(x + Blocks[i].Size.Cols, y, Result.Size.Cols - 1, y + Blocks[i].Size.Rows - 1),
      0);
    MatBlockFill(Result,
      Rect(x, y + Blocks[i].Size.Rows, x + Blocks[i].Size.Cols - 1, Result.Size.Rows - 1),
      0);
    Inc(x, Blocks[i].Size.Cols);
    Inc(y, Blocks[i].Size.Rows);
  end;
end;

function Commute(const A, B: TComplexMatrix; const Epsilon: Extended): Boolean;
begin
  Result := A.CommutesWith(B, Epsilon);
end;

function accumulate(const A: TComplexMatrix; const AStart: TASC;
  AAccumulator: TAccumulator<TASC>): TASC; overload; inline;
begin
  Result := accumulate(A, AStart, AAccumulator);
end;

function sum(const A: TComplexMatrix): TASC; inline;
begin
  Result := sum(TComplexVector(A.Data));
end;

function ArithmeticMean(const A: TComplexMatrix): TASC; inline;
begin
  Result := ArithmeticMean(TComplexVector(A.Data));
end;

function GeometricMean(const A: TComplexMatrix): TASC; inline;
begin
  Result := GeometricMean(TComplexVector(A.Data));
end;

function HarmonicMean(const A: TComplexMatrix): TASC; inline;
begin
  Result := HarmonicMean(TComplexVector(A.Data));
end;

function product(const A: TComplexMatrix): TASC; inline;
begin
  Result := product(TComplexVector(A.Data));
end;

function exists(const A: TComplexMatrix; APredicate: TPredicate<TASC>): Boolean;
begin
  Result := exists(TComplexVector(A.Data), APredicate);
end;

function count(const A: TComplexMatrix; APredicate: TPredicate<TASC>): Integer;
begin
  Result := count(TComplexVector(A.Data), APredicate);
end;

function count(const A: TComplexMatrix; const AValue: TASC): Integer; inline;
begin
  Result := count(TComplexVector(A.Data), AValue);
end;

function ForAll(const A: TComplexMatrix; APredicate: TPredicate<TASC>): Boolean;
begin
  Result := ForAll(TComplexVector(A.Data), APredicate);
end;

function contains(const A: TComplexMatrix; AValue: TASC): Boolean; inline;
begin
  Result := contains(TComplexVector(A.Data), AValue);
end;

function TryForwardSubstitution(const A: TComplexMatrix; const Y: TComplexVector;
  out Solution: TComplexVector; IsUnitDiagonal: Boolean = False): Boolean;
var
  i: Integer;
  row: PASC;
  j: Integer;
begin

  if not A.IsSquare then
    raise EMathException.Create('ForwardSubstitution: Coefficient matrix isn''t square.');

  if A.Size.Cols <> Y.Dimension then
    raise EMathException.Create('ForwardSubstitution: RHS is of wrong dimension.');

  Solution.Dimension := Y.Dimension;

  for i := 0 to A.Size.Rows - 1 do
  begin
    row := A.RowData[i];
    Solution[i] := Y[i];
    for j := 0 to i - 1 do
      Solution[i] := Solution[i] - row[j] * Solution[j];
    if not IsUnitDiagonal then
    begin
      if CIsZero(row[i]) then
        Exit(False)
      else
        Solution[i] := Solution[i] / row[i];
    end;
  end;

  Result := True;

end;

function ForwardSubstitution(const A: TComplexMatrix; const Y: TComplexVector;
  IsUnitDiagonal: Boolean = False): TComplexVector;
begin

  if not TryForwardSubstitution(A, Y, Result, IsUnitDiagonal) then
    raise EMathException.Create('ForwardSubstitution: Matrix is singular.')

end;

function TryBackSubstitution(const A: TComplexMatrix; const Y: TComplexVector;
  out Solution: TComplexVector): Boolean;
var
  i: Integer;
  row: PASC;
  j: Integer;
begin

  if not A.IsSquare then
    raise EMathException.Create('BackSubstitution: Coefficient matrix isn''t square.');

  if A.Size.Cols <> Y.Dimension then
    raise EMathException.Create('BackSubstitution: RHS is of wrong dimension.');

  Solution.Dimension := Y.Dimension;

  for i := A.Size.Rows - 1 downto 0 do
  begin
    row := A.RowData[i];
    Solution[i] := Y[i];
    for j := i + 1 to A.Size.Cols - 1 do
      Solution[i] := Solution[i] - row[j] * Solution[j];
    if CIsZero(row[i]) then
      Exit(False)
    else
      Solution[i] := Solution[i] / row[i];
  end;

  Result := True;

end;

function BackSubstitution(const A: TComplexMatrix; const Y: TComplexVector): TComplexVector;
begin

  if not TryBackSubstitution(A, Y, Result) then
    raise EMathException.Create('BackSubstitution: Matrix is singular.')

end;

function TryLUSysSolve(const A: TComplexMatrix; const P: TIndexArray;
  const Y: TComplexVector; out Solution: TComplexVector): Boolean; overload;
var
  b, c: TComplexVector;
  i: Integer;
begin

  if Y.Dimension <> Length(P) then
    raise EMathException.Create('TryLUSysSolve: RHS is of wrong dimension.');

  b := Y.Clone;
  for i := 0 to High(P) do
    if (P[i] <> -1) and (P[i] <> i) then
      TSwapper<TASC>.Swap(b.Data[i], b.Data[P[i]]);

  Result := TryForwardSubstitution(A, b, c, True) and
    TryBackSubstitution(A, c, Solution);

end;

/// <summary>Solves a linear system using a preformed LU decomposition of the
///  coefficient matrix.</summary>
function LUSysSolve(const A: TComplexMatrix; const P: TIndexArray;
  const Y: TComplexVector): TComplexVector; overload;
var
  b: TComplexVector;
  i: Integer;
begin

  if Y.Dimension <> Length(P) then
    raise EMathException.Create('LUSysSolve: RHS is of wrong dimension.');

  b := Y.Clone;
  for i := 0 to High(P) do
    if (P[i] <> -1) and (P[i] <> i) then
      TSwapper<TASC>.Swap(b.Data[i], b.Data[P[i]]);

  b := ForwardSubstitution(A, b, True);
  Result := BackSubstitution(A, b);

end;

function TrySysSolve(const A: TComplexMatrix; const Y: TComplexVector;
  out Solution: TComplexVector): Boolean;
var
  LU: TComplexMatrix;
  P: TIndexArray;
begin
  A.DoQuickLU(LU, P);
  Result := TryLUSysSolve(LU, P, Y, Solution);
end;

function TrySysSolve(const A: TComplexMatrix; const Y: TComplexMatrix;
  out Solution: TComplexMatrix): Boolean;
var
  LU: TComplexMatrix;
  P: TIndexArray;
  i: Integer;
  sol: TComplexVector;
begin
  A.DoQuickLU(LU, P);
  Solution := TComplexMatrix.CreateUninitialized(Y.Size);
  for i := 0 to Y.Size.Cols - 1 do
    if TryLUSysSolve(LU, P, Y.Cols[i], sol) then
      Solution.Cols[i] := sol
    else
      Exit(False);
  Result := True;
end;

function SysSolve(const AAugmented: TComplexMatrix): TComplexVector;
begin
  Result := SysSolve(AAugmented.Lessened, AAugmented.LastColumn);
end;

function SysSolve(const A: TComplexMatrix; const Y: TComplexVector): TComplexVector;
var
  LU: TComplexMatrix;
  P: TIndexArray;
begin
  if not A.IsSquare then
    raise EMathException.Create('Coefficient matrix isn''t square.');
  A.DoQuickLU(LU, P);
  Result := LUSysSolve(LU, P, Y);
end;

function SysSolve(const A: TComplexMatrix; const Y: TComplexMatrix): TComplexMatrix; overload;
var
  LU: TComplexMatrix;
  P: TIndexArray;
  i: Integer;
begin
  if not A.IsSquare then
    raise EMathException.Create('Coefficient matrix isn''t square.');
  A.DoQuickLU(LU, P);
  Result := TRealMatrix.CreateUninitialized(Y.Size);
  for i := 0 to Y.Size.Cols - 1 do
    Result.Cols[i] := LUSysSolve(LU, P, Y.Cols[i]);
end;

function LeastSquaresPolynomialFit(const X, Y: TComplexVector; ADegree: Integer): TComplexVector;
var
  A, At: TComplexMatrix;
begin
  if X.Dimension <> Y.Dimension then
    raise EMathException.Create('LeastSquaresPolynomialFit: X and Y vectors must have the same dimension.');
  if ADegree < 0 then
    raise EMathException.Create('LeastSquaresPolynomialFit: Polynomial degree must be non-negative.');
  A := VandermondeMatrix(X.Data, ADegree + 1);
  At := A.Transpose;
  Result := SysSolve(At * A, TComplexVector(At * Y));
end;

procedure VectMove(const ASource: TComplexVector; const AFrom, ATo: Integer;
  var ATarget: TComplexVector; const ATargetFrom: Integer = 0);
begin
  Move(ASource.Data[AFrom], ATarget.Data[ATargetFrom],
    (ATo - AFrom + 1) * SizeOf(TASC));
end;

procedure VectMoveToMatCol(const ASource: TComplexVector; const AFrom, ATo: Integer;
  var ATarget: TComplexMatrix; const ATargetCol: Integer;
  const ATargetFirstRow: Integer = 0);
var
  index: Integer;
  i: Integer;
begin
  index := ATargetFirstRow * ATarget.Size.Cols + ATargetCol;
  for i := AFrom to ATo do
  begin
    ATarget.Data[index] := ASource[i];
    Inc(index, ATarget.Size.Cols);
  end;
end;

procedure VectMoveToMatRow(const ASource: TComplexVector; const AFrom, ATo: Integer;
  var ATarget: TComplexMatrix; const ATargetRow: Integer;
  const ATargetFirstCol: Integer = 0);
begin
  Move(ASource.Data[AFrom], ATarget.RowData[ATargetRow][ATargetFirstCol],
    (ATo - AFrom + 1) * SizeOf(TASC));
end;

procedure MatMove(const ASource: TComplexMatrix; const ARect: TRect;
  var ATarget: TComplexMatrix; const ATargetTopLeft: TPoint);
var
  y: Integer;
begin
  for y := 0 to ARect.Bottom - ARect.Top do
    Move(ASource.RowData[ARect.Top + y][ARect.Left],
      ATarget.RowData[ATargetTopLeft.Y + y][ATargetTopLeft.X],
      (ARect.Right - ARect.Left + 1) * SizeOf(TASC));
end;

procedure MatMove(const ASource: TComplexMatrix; var ATarget: TComplexMatrix;
  const ATargetTopLeft: TPoint); overload;
begin
  MatMove(ASource, Rect(0, 0, ASource.Size.Cols - 1, ASource.Size.Rows - 1),
    ATarget, ATargetTopLeft);
end;

procedure MatMoveColToVect(const ASource: TComplexMatrix; const AColumn: Integer;
  const AFrom, ATo: Integer; var ATarget: TComplexVector;
  const ATargetFrom: Integer = 0);
var
  index: Integer;
  i: Integer;
begin
  index := AColumn + AFrom * ASource.Size.Cols;
  for i := ATargetFrom to ATargetFrom + ATo - AFrom do
  begin
    ATarget.Data[i] := ASource.Data[index];
    Inc(index, ASource.Size.Cols);
  end;
end;

procedure MatMoveRowToVect(const ASource: TComplexMatrix; const ARow: Integer;
  const AFrom, ATo: Integer; var ATarget: TComplexVector;
  const ATargetFrom: Integer = 0);
begin
  Move(ASource.RowData[ARow][AFrom], ATarget.Data[ATargetFrom],
    (ATo - AFrom + 1) * SizeOf(TASC));
end;

procedure MatMulBlockInplaceL(var ATarget: TComplexMatrix; const ARect: TRect;
  const AFactor: TComplexMatrix);
var
  prod: TComplexMatrix;
  Large: Boolean;
  i, j, k: Integer;
  row1, row2: PASC;
begin
  prod := TComplexMatrix.CreateUninitialized(
    TMatrixSize.Create(AFactor.Size.Rows, ARect.Right - ARect.Left + 1));
  Large := prod.Size.ElementCount > 100000;
  for i := 0 to prod.Size.Rows - 1 do
  begin
    row1 := prod.RowData[i];
    row2 := AFactor.RowData[i];
    for j := 0 to prod.Size.Cols - 1 do
    begin
      row1[j] := 0;
      for k := 0 to AFactor.Size.Cols - 1 do
        row1[j] := row1[j] + row2[k] * ATarget[ARect.Top + k, ARect.Left + j];
    end;
    if Large then
      DoYield;
  end;
  MatMove(prod, ATarget, ARect.TopLeft);
end;

procedure MatMulBlockInplaceL(var ATarget: TComplexMatrix; const ATopLeft: TPoint;
  const AFactor: TComplexMatrix);
begin
  MatMulBlockInplaceL(ATarget,
    Rect(ATopLeft.X, ATopLeft.Y,
      ATopLeft.X + AFactor.Size.Cols - 1, ATopLeft.Y + AFactor.Size.Rows - 1),
    AFactor);
end;

procedure MatMulBottomRight(var ATarget: TComplexMatrix; const AFactor: TComplexMatrix);
var
  prod: TComplexMatrix;
  n, m, d: Integer;
  Large: Boolean;
  y, x: Integer;
  k: Integer;
  row1, row2: PASC;
begin
  n := ATarget.Size.Rows;
  m := AFactor.Size.Rows;
  Large := n * m > 100000;
  d := n - m;
  prod := TComplexMatrix.CreateUninitialized(TMatrixSize.Create(n, m));
  for y := 0 to n - 1 do
  begin
    row1 := prod.RowData[y];
    row2 := ATarget.RowData[y];
    for x := 0 to m - 1 do
    begin
      row1[x] := 0;
      for k := 0 to m - 1 do
        row1[x] := row1[x] + row2[d + k] * AFactor[k, x];
    end;
    if Large then
      DoYield;
  end;
  MatMove(prod, ATarget, Point(d, 0));
end;

procedure MatBlockFill(var ATarget: TComplexMatrix; const ARect: TRect;
  const Value: TASC);
var
  y: Integer;
  row: PASC;
  x: Integer;
begin
  for y := ARect.Top to ARect.Bottom do
  begin
    row := ATarget.RowData[y];
    for x := ARect.Left to ARect.Right do
      row[x] := Value;
  end;
end;


{ **************************************************************************** }
{ Various square roots                                                         }
{ **************************************************************************** }

function sqrt(const X: TASR): TASR;
begin
  Result := System.Sqrt(X);
end;

function sqrt(const z: TASC): TASC;
begin
  Result := csqrt(z);
end;

function sqrt(const A: TRealMatrix): TRealMatrix;
begin
  Result := msqrt(A);
end;

function sqrt(const A: TComplexMatrix): TComplexMatrix;
begin
  Result := msqrt(A);
end;


{ **************************************************************************** }
{ Common technical definitions                                                 }
{ **************************************************************************** }

procedure InitCaches;
begin
  ExpandPrimeCache(100);
  InitSpecialFunctionsIntegrationCacheList;
end;

function GetTotalCacheSize: Integer;
begin

  Result := 0;

  Inc(Result, GetPrimeCacheSizeBytes);
  Inc(Result, GetSpecialFunctionsIntegrationCacheSize);
  Inc(Result, Length(_harmonic_numbers) * SizeOf(TASR));
  Inc(Result, Length(_MöbiusCache) * SizeOf(Int8));
  if Assigned(_MertensCache) then
  begin
    Inc(Result, _MertensCache.InstanceSize);
    Inc(Result, _MertensCache.Capacity * SizeOf(Integer));
  end;

end;

procedure ClearCaches;
begin
  ClearPrimeCache;
  ClearSpecialFunctionsIntegrationCaches;
  SetLength(_harmonic_numbers, 0);
  SetLength(_MöbiusCache, 0);
  FreeAndNil(_MertensCache);
end;

{ TRange }

constructor TRange.Create(AFrom, ATo: Integer; AStep: Integer = 1);
begin
  From := AFrom;
  &To := ATo;
  Step := AStep;
end;

constructor TRange.Create(ASinglePoint: Integer);
begin
  From := ASinglePoint;
  &To := ASinglePoint;
  Step := 1;
end;

{ TFormatOptions.TComplexOptions }

function TFormatOptions.TComplexOptions.ImaginarySuffix: string;
begin
  Result := MultiplicationSign + ImaginaryUnit;
end;

function TFormatOptions.TComplexOptions.MinusStr: string;
begin
  if Spaced then
    Result := SPACE + MinusSign + SPACE
  else
    Result := MinusSign;
end;

function TFormatOptions.TComplexOptions.PlusStr: string;
begin
  if Spaced then
    Result := SPACE + PlusSign + SPACE
  else
    Result := PlusSign;
end;

{ TASR2 }

constructor TASR2.Create(AX, AY: TASR);
begin
  X := AX;
  Y := AY;
end;

{ TASR3 }

constructor TASR3.Create(AX, AY, AZ: TASR);
begin
  X := AX;
  Y := AY;
  Z := AZ;
end;

{ TASR4 }

constructor TASR4.Create(AX, AY, AZ, AW: TASR);
begin
  X := AX;
  Y := AY;
  Z := AZ;
  W := AW;
end;

initialization
  FS := TFormatSettings.Create(1033);
  InitCaches;

finalization
  ClearCaches;

{$IFNDEF REALCHECK}
{$MESSAGE Warn 'asnum.pas compiled without REALCHECK.'}
{$ENDIF}

end.